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1
Introduction

1.1 Historic overview of ultrasound imaging

Robert Hooke (1635–1703), the eminent English scientist responsible for
the theory of elasticity, foresaw the use of sound for diagnosis when he
wrote [1]:

“It may be possible to discover the motions of the internal parts

of bodies, whether animal, vegetable, or mineral, by the sound

they make; that one may discover the works performed in the

several offices and shops of a man’s body, and thereby discover

what instrument of engine is out of order, what works are going

on at several times, and lie still at others, and the like.”

The key principle of diagnostic ultrasound

Figure 1.1: Echo location
by animals

imaging is the use of echo–location. Echo–loca-
tion is the use of reflections of sound to locate
objects. Many animals in the natural world,
such as bats (see Fig. 1.1) and dolphins, use this
principle. In 1794 L. Spallanzani investigated
this principle by observing the movements of
bats in the dark. He theorized that they detected
obstacles using sound waves rather than light.
The connection between echo–location and the
medial application of sound, however, was not
made until the science of underwater exploration matured.

The beginnings of sonar and ultrasound for medical imaging can be
traced to the sinking of the Titanic. Within a month of the Titanic tragedy,
British scientist L.F. Richardson [3] filed patents to detect icebergs with
underwater echo ranging. But in 1913, there were no practical ways to

1



2 1. INTRODUCTION

implement his ideas. However, the discovery of piezoelectricity (the prop-
erty by which electrical charge is created by the mechanical deformation
of a crystal) by the Curie brothers in 1880 and the invention of the triode
amplifier tube by Lee De Forest in 1907 set the stage for further advances
in pulse–echo range measurement. The Curie brothers also showed that
the reverse piezoelectric effect (voltages applied to certain crystals cause
them to deform) could be used to transform piezoelectric materials into
resonating transducers.

By the end of World War I, C. Chilowsky and P. Langevin [4] took
the technologies to realize practical echo ranging in the water. Their
high–power echo–ranging systems were successfully used to detect sub-
marines. During transmissions however, they observed schools of dead
fish that floated to the water surface. Langevin also observed that pain
was induced in the hand, when it was placed inside a water tank that was
insonated with the high–intensity ultrasound. This shows that scientists
were aware of the potential for ultrasound–induced bioeffects from the
early days of ultrasound research [5].

After World War II, with sonar and radars as models, a few medical
practitioners saw the possibilities of using pulse–echo techniques to
probe the human body for medical purposes. In the 1950s a single
piezoelectric crystal was first employed in contact with skin to launch an
acoustic wave into human tissue. The wave consisted of several cycles
at a frequency of 20 kHz, beyond the capacity of human hearing. A
series of reflections returned to the crystal at different times because of
mismatches of acoustic impedance (density × sound speed) between
organs and bone.

The 1960s saw the development of commercial ultrasound systems
that exploited the mass production of cathode–ray tubes. Widespread use
of ultrasound followed.

Modern ultrasound scanners use the linear superposition of spherical
or cylindrical wavefronts of tiny piezoelectric crystals. Those crystals are
arrayed to produce waveforms that can be steered or focused based upon
the timing of the crystal’s excitations.

1.2 Ultrasound imaging

Medical ultrasound (US) imaging is based on transmitting and receiving
sound waves with frequencies ranging from 1–50 MHz. The waves are
generated by a transducer consisting of piezo–electric crystals which
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Figure 1.2: Echocardiography being performed in a hospital (left). A typical
echocardiogram (right).

convert electric signals into ultrasonic pulses [6]. The transmitted waves
propagate through a medium until they hit reflecting or scattering ob-
jects, and the reflected waves are received by the same transducer. The
time between transmission and reception is directly related to the dis-
tance from the source to the reflecting object by the assumption that the
speed of propagation is constant in the medium. Ultrasound can travel
through water and soft tissue, and is therefore a suitable technique for
non–invasive imaging of structures inside the human body (see Fig. 1.2
for a cardiogram).

The scatter and reflection of sound from inhomogeneities in the
tissue [7] are being exploited in ultrasound imaging. The scatter from
blood however is much weaker than the scatter from tissue. To increase
the scattering properties from the blood pool, an ultrasound contrast
agent (UCA) is introduced in the blood.

1.3 Ultrasound contrast agents

Ultrasound contrast agents were proposed nearly four decades ago, when
it was accidentally discovered that air bubbles could be detected in the
bloodstream after injections of agitated aqueous solutions [8]. An UCA
is a liquid, containing small encapsulated microbubbles, which very
efficiently scatter ultrasound [9–11] (see Fig. 1.3 for a scanning electron
microscopy picture and an optical microscopy picture). In this way, it is
possible to visualize and quantify the perfusion of tissue, like for instance
the heart muscle, liver or kidney.

The commercial development of contrast agents began in the 1980s
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Figure 1.3: A scanning electron microscopy picture of contrast bubbles (left). A
typical optical microscopy picture of contrast bubbles in a solution (right).

with observations that led to the stabilization and miniaturization of the
microbubble. Carroll et al. [12] demonstrated that gelatin–encapsulated
nitrogen bubbles were stable enough to be used for US enhancement.
Then, Feinstein et al. [13] showed that microbubbles sonicated from
human serum albumin were small and stable enough to traverse the
pulmonary circulation and to opacify the left ventricle. These findings
led to significant interest in the development of a commercially available
US contrast agent by pharmaceutical companies. Several programs were
initiated to develop an easy to use and clinically useful contrast agent
for ultrasound. Schering AG (Berlin, Germany) was the first company
to be successful. Their first agent was Echovist® (1982), which enabled
enhancement of the right ventricle only, followed by Levovist® (1985),
which achieved enhancement of the left ventricle. Schering’s agents are
approved in Europe, Japan and Canada. Molecular Biosystems Inc. (MBI;
San Diego, CA) developed Albunex®, the first agent approved by the US
Food and Drug Administration (FDA) in 1994 for USA distribution. The
agent was based on technology utilizing sonicated human serum albumin
to encapsulate and stabilize the air microbubble. Both Albunex® and
Levovist® utilize air as the gas component of the microbubble. This
resulted in reduced longevity in vivo and limited the commercial success
of these agents.

The use of various types of perfluorocarbon (PFC) gas to increase
the persistence of the microbubble was first introduced in the early
1990s. Many agents under development incorporated PFC technology
into their formulations. These products include reformulation of the
Albunex® technology utilizing a PFC gas. This product was named
Optison® (MBI). Additional agents have been developed that utilize PFC
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gas and vary the constituents in the shell that encapsulate the gas, like
Definity® (2001) distributed by Bristol Myers Squibb (New York, NY)
and Imagent® (2002), distributed by IMCOR (IMCOR, San Diego, CA), a
division of Photogen Technologies Inc. Another agent, SonoVue® (Bracco
International B.V., Amsterdam, The Netherlands), utilizes sulfur hexaflu-
oride, a low–solubility fluorinated gas. These development activities have
resulted in smaller, more stable microbubble agents, which, coupled
with improvements in ultrasound equipment technology, have resulted
in the extension of contrast enhancement from cavity opacification to
perfusion.

To summarize, contrast agents are nowadays used in various medical
investigations, e.g. in obtaining diagnostic information from the volume,
shape and movement of the heart ventricles, or to quantify the perfusion
of various organs, like liver or kidney.

In general, the microbubbles consist of air or an inert gas and they are
coated with a protein, lipid or polymer layer. This prevents the bubbles
to either dissolve in the blood or to coalesce to form larger bubbles.
When subjected to ultrasound a microbubble will start to oscillate at
the frequency of the ultrasound. At higher ultrasound intensity the
oscillations become more extreme and nonlinear behavior will start to
appear. The bubble will produce higher harmonics (e.g. at twice or three
times the fundamental frequency). It could also become unstable and
could collapse. These interesting effects are tested and implemented in
new diagnostic and therapeutic ultrasound applications.

The fundamental understanding of the dynamics of contrast bubbles
is a field of ongoing research. For example, the quantification of the re-
sponse of contrast bubbles to ultrasound is an important research aspect.
Until now, bubbles are characterized mainly by studying acoustically a
representative sample of the UCA, containing many microbubbles [14–
16]. From this data the overall resonance behavior of the sample can
be deduced. Ideal contrast agents would be monodisperse in size, but
in practice they have a size distribution which can be measured with,
e.g., a Coulter counter, resulting in a mean size and size range [17]. For
SonoVue® and also for BR-14 (Bracco Research S.A., Geneva, Switzer-
land), e.g., the mean radius is 1.5 µm, with 95% of the bubbles smaller
than 5 µm. The polydispersity of the microbubbles makes it difficult to
extract information on the physical properties of single bubbles, since the
acoustical response of a bubble strongly depends on its size [17]. Fur-
thermore, the acoustic pressure signal emitted by the bubbles is distorted
by frequency–dependent scattering and attenuation. On the other hand,
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measuring the acoustic response of a single individual contrast bubble is
a complicated task [18]. First, it is difficult to isolate a single bubble in the
focal region of a transducer, which would require at least 1 mm of distance
between the bubbles. Second, extracting the absolute pressure emitted by
the bubble from the measured response requires an accurate calibration
of the transducer transfer function.

1.4 Imaging

To overcome the difficulties associated with acoustical characterization,
optical methods have been proposed [19–23]. Such methods are based on
the direct measurement of the bubble radius, which, unlike the acoustical
response, is not subject to distortion and in principle does not require
difficult calibration. Furthermore, the interaction between bubbles (sec-
ondary Bjerknes forces) decays as the inverse square of their distance,
fast enough to consider different bubbles to oscillate independently as
soon as they are separated by a few (roughly ten) bubble radii. Isolating
the response of a single bubble optically is thus less constraining than
for acoustical measurements. However, optical methods exhibit other
drawbacks: very high frame rates are required to resolve microbubble
oscillations at several MHz, and the resolution is limited, since the mi-
crobubble size is just a little higher than the optical resolution.

Cameras that record at these high speeds exist, however their record-
ing capability is limited to a total number of 8 frames only. The ultrasound
typically lasts for 10 cycles during which the response of the microbubbles
can be highly non–linear. The number of frames should be sufficient to
record the complete bubble response, therefore, more than 100 frames
are desirable.

Rotating mirror cameras produce frame records up to 25 million
frames per second. They record up to 130 frames on a negative film track.
The exposed image is relayed to the film by associated lenses and a fast
rotating mirror (1.2 million rpm). The most important disadvantage of
using negative film is its poor light sensitivity which is limited to 3200
ASA, highly insufficient for the short exposure times in our microscopic
application.
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1.5 Brandaris 128

The Physics of Fluids group of the University of Twente and the Biomed-
ical Engineering group of the Erasmus MC have constructed a digital
camera system [24]. The negative film track of the rotating mirror camera
was replaced by highly sensitive CCD cameras, and an ultra high–speed
camera is constructed that records 128 digital frames at a speed of up to
25 million frames per second (40 nanoseconds interframe time). This way
it is possible to capture the dynamics of oscillating contrast bubbles.

The sweeping light beam within a rotating

Figure 1.4: The Brandaris
light house on the is-
land of Terschelling, The
Netherlands, which was
built in 1594.

mirror camera resembles that of the optical prin-
ciple of a light house, therefore the camera Bran-
daris 128 was named after the Netherlands’ most
famous lighthouse on the island of Terschelling
(see Fig. 1.4).

Brandaris 128, illustrated in Fig. 1.5, is de-
veloped upon the Cordin 119 (Cordin Scientific
Imaging, Salt Lake City, Utah) camera frame.
The system combines the flexibility and sensi-
tivity of electronic CCD detectors with the high
frame rate and high number of frames available
in rotating mirror cameras. In front of the cam-
era different lenses can be mounted to suit the
needs of the experiment, for example, Fig. 1.5
shows a high resolution microscope mounted.
Generally, a suitable field lens is needed to cou-
ple the objective to the Brandaris. A set of relay lenses projects an
image of the target subject onto a mirror prism. A gas turbine spins
the three–faced mirror prism at high speed and redirects the incoming
light through a lens bank to the CCD detectors. The maximum turbine
speed is 20 000 rotations per second, resulting in a frame rate of 25 Mfps.
The image is recorded on 128 un–intensified high sensitivity CCD chips
mounted on an image arc. Thirty–two CCD Controller Cards (C3) control
the 128 CCDs and transfer the images to a personal computer (PC) via
standard universal serial bus (USB) hubs. The C3 hosts buffer memory
that allows six full recordings to be stored on board. An infrared laser
photodiode pair mounted at 30◦ below the optical axis generates three
mirror pulses per prism rotation. The mirror pulses provide accurate
measurement of the instantaneous mirror rotation rate. A mass flow
controller (MFC), itself controlled by a PC via a flow and timing controller,
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Figure 1.5: A schematic view of the interior of the Brandaris 128 high speed camera

regulates the gas flow (in general, helium is used) to the turbine and
thereby determines the mirror rotation speed and thus imaging frame
rate. The mirror pulses are also used as a master to control the experiment
including the timing of the CCDs and the flash illumination source. The
camera frame is filled with helium to minimize drag on the rotating
mirror.

The six memory places of the 128 CCDs allow 768 images to be
recorded in a single run. When the camera is operated in a segmented
mode, these 768 images can be reorganized as required. For instance,
instead of six movies of 128 frames, we can also record twelve movies
of 64 frames, or twenty–four movies of 32 frames. The segmented mode
principle is used in the experiments described in Ch. 3.

The Brandaris high speed camera makes it possible to study dynamics
of oscillating bubbles. It also enables studies of bubble–wall interaction,
bubble–bubble interaction and bubble–cell interaction. It was also used
to study cavitation bubbles, bubbles in ink channels in printheads, and
jetting bubbles.

The work presented here focusses on the response of contrast bubbles
to ultrasound. A bubble responds differently if it is insonified with
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frequencies lower than, at, or above the resonance frequency. Therefore,
the resonance frequency of a contrast bubble plays a big role in the
response.

1.6 Resonance

Resonance is a very common phenomenon which occurs in many types
of physical systems. A familiar example is pushing a child on a swing.
You can make the swing go higher and higher with relatively little effort
if you time your push just right. The swing has a natural frequency of
vibration and pushing “just right” means you are putting energy into it at
a frequency known as the resonance frequency. The system is said to be
in resonance and the amplitude of the motion increases rapidly.

There are also many examples of resonance in every day life. There
is acoustic resonance in musical instruments, resonance in electrical
circuits, but also large buildings or bridges can, if carelessly designed,
oscillate in resonance.

1.7 Guide through the thesis

Since echoscopy using ultrasound contrast agents is a relatively new field,
many improvements are still achieved in imaging and detection. The key
to improving and optimizing is to fundamentally understand the bubble
dynamics.

A first step to understanding the behavior of the coated microbubbles,
is to set up a model which describes the dynamics of the microbubbles.
Over the years, several theoretical models have been proposed. First
of all, in 1917, Lord Rayleigh [25] studied cavitation bubbles around
ship propellers. Minnaert [26] in 1933 performed a theoretical study
of the sound emission of bubbles. Combined with some experiments,
he explained the characteristic resonance frequency. In the early 1950s
Plesset [27] and Noltingk [28] and Neppiras [29] introduced more sophis-
ticated models for oscillating bubbles, followed by refinements in the late
1950s (Keller [30], Gilmore [31], Herring [32], Trilling [33]) and the 1980s
by Keller and Miksis [34] and Prosperetti [35]. Encapsulated microbubbles
were first modeled by De Jong et al. [36] in 1992 and De Jong and Hoff [37]
in 1993, incorporating experimentally determined elasticity and friction
parameters into the Rayleigh–Plesset model. Church [38] used linear
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visco–elastic constitutive equations to describe the shell. In Ch. 2 a new
model is introduced. In this model an effective surface tension was
introduced which depends on the bubble radius, incorporating the effect
of the phospholipidic monolayer coating of contrast agents.

The Brandaris 128 high speed camera enables optical recording of
the dynamics of ultrasound contrast agents. Analyzing the behavior
of individual contrast agents under influence of ultrasound is therefore
also a completely new possibility. Some general properties of contrast
agents are the resonance frequency, shell damping and shell viscosity. A
method to measure these properties, termed microbubble spectroscopy,
was developed and the results of this study are reported in Ch.3.

Both coated microbubbles and free microbubbles can start to oscillate
non–spherically. The non–spherical behavior starts as a parametric insta-
bility which grows over time. After a few oscillation cycles, surface mode
oscillations can appear. The results of a study of free microbubbles are
described in Ch. 4. The behavior of coated bubbles is reported in Ch. 5.

At higher oscillation amplitudes, the frequency with maximum oscil-
lation amplitude appeared to decrease. This shift of the peak frequency
away from the eigenfrequency of the bubble, was investigated in Ch. 6
by introducing a new fast method that derived this peak frequency. The
method used chirp frequency sweeps, allowing the method to character-
ize the bubble even faster than with microbubble spectroscopy. It was
also observed that a bubble behaves differently to a chirp up sweep and
a chirp down sweep, which is of potential interest for contrast imaging
techniques.

Finally, all conclusions of the thesis are summarized in Ch. 7.
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2
A model for large amplitude

oscillations of coated bubbles

accounting for buckling and rupture§

We present a model applicable to ultrasound contrast agent bubbles that

takes into account the physical properties of a lipid monolayer coating

on a gas microbubble. Three parameters describe the properties of the

shell: a buckling radius, the compressibility of the shell and a break-up

shell tension. The model presents an original non-linear behavior at large

amplitude oscillations, termed compression-only, induced by the buckling

of the lipid monolayer. This prediction is validated by experimental

recordings with the high-speed camera Brandaris 128, operated at several

millions of frames per second. The effect of aging, or the resultant of

repeated acoustic pressure pulses on bubbles, is predicted by the model. It

corrects a flaw in the shell elasticity term previously used in the dynamical

equation for coated bubbles. The break-up is modeled by a critical shell

tension above which gas is directly exposed to water.

2.1 Introduction

To enhance ultrasound echographic imaging, micrometer sized coated
bubbles are used as contrast agents. Coating materials include lipid
monolayers, polymer shells, or thick solid shells. The coating stabilizes
the bubbles and prevents their coalescence. Pulmonary alveoli in the
lungs have a lipidic coating for the same reason [1]. The coating modifies

§Based on: Philippe Marmottant, Sander van der Meer, Marcia Emmer, Michel Versluis,
Nico de Jong, Sascha Hilgenfeldt, Detlef Lohse, "A model for large amplitude oscillations
of coated bubbles accounting for buckling and rupture", J. Acoust. Soc. Am. 118(6), 3499-
3505 (2005)
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the effective surface tension. Since surface tension plays a crucial role in
the dynamics of small bubbles, when the capillary pressure term is of the
order of the static ambient pressure, the coating is expected to strongly
influence the dynamics.

All current models developed to describe coated bubble oscillations
implicitly assume small deformations of the bubble surface: however, in
practice, insonifying contrast agent bubbles produces oscillations with
large variations in the surface area. We will present in this manuscript a
model designed to incorporate the effect of a coating on the microbubble
response to ultrasound, and to specifically capture the high-amplitude
dynamics.

We focus on phospholipidic monolayer coatings, used in several con-
trast agent bubbles [2]. The phospholipid molecules naturally adsorb to
the interface [3] and shield the water from the air, reducing the surface
tension σ to a value lower than that of pure water (73 mN/m). Surface
tension can be measured in a flat monolayer with the Langmuir-Blodgett
balance, or on centimeter sized bubbles [4], showing its dependence on
the surface concentration of molecules.

The compression of the monolayer decreases the area available per
molecule. When this area reaches that covered by the lipid molecules
(typically 0.4 nm2 for phospholipids in the trans configuration normal to
the interface), the effective surface tension decreases sharply, see Fig. 2.1.
The variation of surface tension with the area A is expressed with the
elastic compression modulus defined by χ = A dσ

dA (of order 0.2 N/m for a
slow compression, as derived from the steepest slopes of Fig. 2.1). Further
compression leads to an unstable situation where the monolayer buckles
out of plane, while the surface tension nearly vanishes. A spectacular
demonstration of the buckling is the appearance of wrinkles on coated
bubbles when their gas dissolves out [8]. Buckling can be reversible [9, 10].
Vanishing surface tensions were revealed by the microscopic observation
of bubbles with a monolayer lipid coating in a solid state: these bubbles
could assume a steady non spherical shape [11] when deformed with a
micropipette, and dissolution was greatly reduced by the absence of the
capillary overpressure [12].

In contrast, a slow expansion separates molecules from each other:
surface tension rises. A monolayer made from pure lipid (one species
only) will show phase changes from a 2D solid state, to a liquid and
eventually gaseous state, where surface tension is close to that of water.
With a mixture of lipid molecules the phase changes are not necessarily
present, and a 2D solid can rupture during expansion, leaving rafts of solid
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Figure 2.1: Effective surface tension versus area per molecule at the interface for
two phopholipids (both present in the contrast agent SonoVue® [5]) under slow
compression at a few % per minute: distearoylphosphatidylcholine (DSPC), solid
line; and dipalmytoylphosphatidylglycerol (DPPG), broken line. Curves redrawn
from [6, 7].

phospholipid molecules separated by clean interfaces [13].

Most previous existing experimental data on phospholipidic mono-
layers were collected at very slow compression/expansion rates, when
molecules at the interface could equilibrate. Only a few experiments tack-
led the high-frequency and thus out-of equilibrium trends: the buckling
surface tension comes closer to zero and the elastic modulus becomes
higher (see reported experiments [1] with pulmonary surfactant com-
pressed within 0.2s). These findings give some hint to the extrapolation
of surface properties to the realm of high frequency oscillations, the one
we are going to explore with oscillating contrast agent bubbles.
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2.2 Model

2.2.1 Effective surface tension of a bubble during its oscillation

At high frequencies, we propose to model the effective surface tension σ
of the lipidic monolayer of a bubble along three linear regimes inspired by
the low frequency observations. The regimes depend on the bubble area
A = 4πR2, with R the bubble radius (see Fig. 2.2). This simplified model
is designed to capture the coated bubble dynamics with a minimum of
parameters.
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Figure 2.2: Model for the dynamic surface tension of a monolayer coated bubble
(continuous line). The coating has a fixed number of lipid molecules, which
corresponds to a monolayer at equilibrium (when area is A0). The tension
saturates to the water value σwater (broken line) after the break-up tension has
been reached (σbreak−up > σwater, see main text).

The model has three parameters only to describe the surface tension:
the buckling area of the bubble Abuckling below which the surface buckles,
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an elastic modulus χ that gives the slope of the elastic regime. The third
parameter is incorporated to describe the moment of rupture: the elastic
regime holds until a critical break-up tension called σbreak−up. When this
limit has been reached the maximum surface tension saturates at σwater.

We motivate here the modeling of the three states:

• Buckled state, σ = 0.
Consistent with experimental findings on the fast compression of
pulmonary phospholipid monolayers, we assume a near vanishing
surface tension in the buckled state [1]. The buckling area of the
bubble depends on the number n of lipid molecules at the interface
and on the molecular area at buckling abuckling, with Abuckling =

n abuckling, with abuckling typically of the order of 0.4 nm2, see previous
section. Note that a first compression of the bubble might expel in
bulk some molecules into the bulk [14], decreasing the number n.
After this transient expulsion, and for moderate driving amplitudes
and short exposures, we expect the number of molecules to remain
constant, as phospholipids with long carbon chains are poorly
soluble.

• Elastic state, σ = χ
(

A
Abuckling

− 1
)

.

The shell is elastic only in a narrow area range. The lower limit is
Abuckling for the area, or equivalently Rbuckling for the radius. The
upper limit radius is fixed by the maximum surface tension, which is
σbreak−up before rupture of the shell giving Rbreak−up = Rbuckling(1 +

σbreak−up/χ)1/2, or σwater after rupture giving Rruptured = Rbuckling(1 +

σwater/χ)1/2. The elastic regime holds only in a narrow range of
radii, since χ is usually large compared to σbreak−up or σwater. The
value of the elastic modulus can also incorporate the presence of
any solid-like shell material that sustains tensile stress (such as the
polyethyleneglycol polymer in SonoVue® contrast agent bubbles
[5]). We assign a constant elastic modulus in this state, slightly
caricaturing the quasi-static profiles of Fig. 2.1, a simplification of
the model to facilitate calculation.

Within this regime the surface tension is a linear function of the
area, or of the square of the radius, and for small variations around
a given radius R0, it can be written as:
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σ(R) = σ(R0) + χ

(

R2

R2
0

− 1

)

≃ σ(R0) + 2χ

(

R

R0
− 1

)

when |R − R0| ≪ R0.

(2.1)

The lipid monolayer behaves as if composed of a thin solid and
elastic material, see the appendix for the derivation of the tension
of a thin elastic shell.

• Ruptured state, σ = σwater.
A fast expansion, such as the one triggered on a bubble by an
ultrasonic pressure pulse, does not allow much time for any phase
change and the monolayer is likely to break at a critical tension
σbreak−up, exposing bare gas interfaces to the liquid. The bare
interface has a tension value of σwater. The break-up tension can
be higher than σwater, since any polymer component confers more
cohesion to the shell, and shifts the break-up to higher tensions.
The introduction of a high tension break-up was motivated by the
observation of resistant bubbles, as will be exposed further.

After break-up we assume that surface tension relaxes to σwater.
Even if the phospholipid monolayer rafts are likely to display non-
isotropic tensions and shear stresses (being solid), the expansion is
uniform before rupture, and the stress is likely to remain close to
uniformity on average. The average tension value is settled in this
case by the local mechanical equilibrium between the solid rafts and
the bare interfaces, the latter pulling with the tension σwater.

2.2.2 Dynamics of the coated bubble

During the oscillation, the dynamical surface tension will vary, since
it is a function of the bubble area and therefore of the bubble radius.
We therefore write the effective surface tension σ(R) to emphasize this
dependence. In motion, the balance of normal stresses at the interface
reads

Pg(t) − Pl(t) =
2σ(R)

R
+ 4µ

Ṙ

R
+ 4κs

Ṙ

R2
, (2.2)

with Pg the gas pressure in the bubble, Pl the liquid pressure, µ the
surrounding liquid viscosity and κs the surface dilatational viscosity from
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the monolayer. The first term on right-hand side is the capillary pressure
term, while the second is the stress arising from the frictions in the liquid
and the third from frictions in the shell. The last term was initially derived
for a layer of finite and constant thickness ǫ (ǫ ≪ R) by Morgan et al. [15],
the dilatational viscosity writing κs = 3ǫµlipid, with µlipid the bulk lipid
viscosity. Here we use only κs to describe the monolayer shell surface
viscosity, following Chatterjee and Sarkar [16]. In this model κs does not
depend on the surface area, nor does it exhibit any hysteresis. Note that
the shear viscosity of the surface does not come into play in the present
situation, because of the radial motion of the bubble.

The Laplace capillary pressure term writes 2σ(R)
R including the effective

surface tension, without any additional terms, contrary to a previous
statement in an article by Glazman [17], who expressed the capillary pres-
sure by the erroneous expression 2σ

R + ∂σ
∂R = 2

R (σ + χ( R0
R )2). We demon-

strate here why: the capillary overpressure derives from the mechanical
equilibrium of all forces acting on the interface (of vanishing mass), that
is the infinitesimal work δW of the forces cancels out for small bubble
radius variation. By definition, the work associated with a variation dA
of the area is σdA [18], while the pressure work from a variation dV of
the volume is −(Pg − Pl)dV. Owing to the mechanical equilibrium of
the interface, the sum of these works vanishes, and we obtain the static
capillary term of equation (2.2). In the analysis by Glazman, the surface
work is expressed incorrectly by σdA + Adσ (instead of σdA) from the
differentiation of a surface potential energy E = σA: actually this last
expression of the surface potential energy (E =

∫

δWsur f ace by definition)
is valid only when σ is constant.

The popular model of Morgan et al. [15] for coated microbubbles im-
proves the description of viscous frictions, but is based on the analysis of
Glazman for the elasticity of the lipid shell, equivalent to the introduction
of an effective surface tension σ(R) = σ0 + χ( R0

R )2 that fails to describe
a coated bubble. Physically it would mean that surface tension always
decreases when the bubble is inflated, in contrast with the behavior of
lipid monolayers or elastic solid shells.

The hydrodynamics of the liquid motion around the bubble is mod-
eled by the (modified) Rayleigh–Plesset equation ρl(RR̈ + 3

2 Ṙ2) = Pl(t) −
P0 − Pac(t) − R

c
dPg(t)

dt , with P0 the ambient pressure, Pac(t) the acoustic
pressure, and c the velocity of sound in the liquid. This equation proved
to be accurate and robust even in the extreme conditions of sonolumines-
cence [19]. We choose an ideal polytropic ideal gas law Pg ∝ R−3κ, with κ
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the polytropic gas exponent. It is 1 for bubbles behaving isothermally, and
equal to the ratio of specific heats for bubbles behaving adiabatically [20]
(close to 1.095 for SF6). In the following, the thermal diffusion length in
the gas during a period being small compared to the radius, we use the
adiabatic version.

Combining the Rayleigh–Plesset equation and the polytropic gas law
with the boundary condition (2.2) we obtain the model for the bubble
dynamics:

ρl

(

RR̈ +
3

2
Ṙ2

)

=

(

P0 +
2σ(R0)

R0

) (

R

R0

)−3κ (

1 − 3κ

c
Ṙ

)

−P0 −
2σ(R)

R
− 4µṘ

R
− 4κsṘ

R2
− Pac(t),

(2.3)

with R0 the equilibrium radius of the bubble. This equation is identical to
a free gas bubble equation, except from the effective surface tension σ(R)
term and the shell viscosity term. The tension expressed in our monolayer
model described above, and expressed here in terms of the bubble radius
writes:

σ(R) =















0 if R ≤ Rbuckling

χ

(

R2

R2
buckling

− 1

)

if Rbuckling ≤ R ≤ Rbreak−up

σwater if ruptured and R ≥ Rruptured

(2.4)

The third regime appears after rupture of the shell, when σbreak−up has
been reached (see broken line of fig. 2.2).

For small vibration amplitudes within the tensed elastic state, the
surface tension can be linearized around a constant value, with σ(R) ≃
σ(R0) + 2χ (R/R0 − 1), from equation (2.1). Implemented in the dynami-
cal equation its yields the same pressure term −2σ(R)/R = −2σ(R0)/R−
4χ(1/R0 − 1/R) as in the model proposed by de Jong et al. [21] for thin
elastic shells. The shell stiffness coefficient Sp they introduced is simply
related to the present shell elasticity by Sp = 2χ, while their shell friction
coefficient writes S f = 12πκs. We stress here again that the model by
de Jong et al. [21] is limited to small amplitudes of vibration (for effective
tensions bounded between 0 and σwater, or for R in between Rbuckling and
Rcollapse), while the present model extends the oscillation to unbounded,
large amplitudes.
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2.2.3 Implications of the model: bubble compressibility

The effective tension model drastically changes the compressibility of the
bubble. For slow variations of the ambient pressure P, at frequencies
small compared to the resonance frequency, we can compute the equi-
librium radius response, see Fig. 2.3, setting Ṙ = 0 in equations (2.3) and
(2.4).
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Figure 2.3: Ambient pressure versus equilibrium radius for a coated bubble
(continuous line) and a free gas bubble (dotted line). At atmospheric pressure,
the bubble radius is R0 = 2 µm. The coated bubble is initially in the elastic state
(Rbuckling = 1.98 µm, χ = 1 N/m.)

From the equilibrium, we also derive the compression modulus of the
bubble, KV , with:

KV = −V

(

dP

dV

)

=















κP for the buckled state

κP + 4
3

χ
R for the elastic state

κP + 3κ−1
3

2σwater
R for the free bubble/broken

shell state
(2.5)
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with V the bubble volume, a polytropic exponent κ close to 1 for slow
and isothermal compressions, and in the limit of χ ≫ σwater (usual for
phospholipids). The compression modulus is much higher when the
bubble is in the elastic state: this is reflected in the much steeper slope
of the curve of Fig. 2.3. When the pressure is increased enough the bubble
buckles, and becomes very compressible, even more than an uncoated
free gas bubble of the same radius (whose internal pressure is increased
by capillarity).

The change in compressibility is reflected on the dynamics of small
amplitude oscillations as well. The linearization of the equations, set-
ting R(t) = R0(1 + x(t)), provides a damped oscillator equation ẍ +
2γẋ + ω2

0x = −Pac(t)/ρlR
2
0, with a damping coefficient γ = 2µ/ρl R

2
0 +

2κs/ρl R
3
0 + 3κ(P0 + 2σ(R0)/R0)/2cρl R0, and an eigenfrequency simply

writing:

ω2
0 =

3

ρl R
2
0

KV . (2.6)

In the free bubble state, this equation provides the Minnaert frequency
as expected. It can be concluded that bubbles in the elastic state have a
much higher resonance frequency than free or buckled bubbles, because
their compression modulus is higher, consistently with the derivation of
de Jong [21].

2.3 Results

2.3.1 Compression-only behavior

At small acoustic amplitudes, the model presented above provides a linear
radius response to the pressure similar to other Rayleigh–Plesset models
with constant surface tension.

Under large pressure amplitudes, the bubble will experience an orig-
inal non-linear response. It will likely buckle in its compression phase,
which cancels out any surface tension. On the other hand the surface
tension rapidly rises during the expansion phase, and this asymmetry in
surface tension provides an asymmetry in capillary pressure, especially
strong for small bubbles. The radius response curve displays this asym-
metry by a ’compression-only’ behavior.

Recent experiments, realized with the high-speed camera Brandaris
128 [22], reveal the existence of such asymmetric oscillations of bub-
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bles. The experiment was conducted as follows: SonoVue® and BR14
contrast bubbles, supplied by Bracco Research S.A., Geneva, Switzerland,
were prepared in the vial about 24 hours prior to the recording of their
dynamics. Both types of bubbles present a phospholipidic coating,
SonoVue® containing SF6 gas [5], while BR14 contains the even less solu-
ble C4F10 gas [23]. The contrast bubbles were led through a capillary fiber
inside a small water-filled container. An Olympus microscope with a 60×
high resolution water immersed objective and a 2× magnifier produced
an image of the contrast bubbles. The image was then relayed to the
high speed framing camera Brandaris 128. A broadband single element
transducer was mounted at 75 mm from the capillary. A Tektronix AWG
520 arbitrary waveform generator provided a signal amplified by an ENI
A-500 amplifier. The bubble response was investigated with sequential
ultrasound bursts of 8 cycles at frequencies ranging from 1.5 MHz to 5
MHz. The camera was operated at a framing rate of 15 million frames per
second, resolving the insonified microbubble dynamics. From the images
(see Fig. 2.4) the radius versus time curves for each individual bubble
were extracted (Fig. 2.5A), from which the compression-only behavior is
apparent.

Figure 2.4: Consecutive images of a contrast agent bubble from the high speed
camera Brandaris operated at 14.3 million frames per second (time intervals
between images are thus 69.8 ns), during one ultrasound cycle, of frequency
2.6 MHz. The bubble radius is initially 1.95 µm, and frame D shows the bubble
compression.

This phenomenon is very well modeled with our effective surface ten-
sion model, see Fig. 2.5B, assuming the bubble to be initially in a tension-
less state (Rbuckling = R0), and allowing the shell to support elevated
tensions. Note that the fitted elastic modulus and shell viscosity of this
shell are of the same order of magnitude than the average ones from
attenuation measurements on bubble populations by Gorce et al. [24],
who deduced an average shell elasticity χ = Sp/2 = 0.55 N/m and shell
friction κs = S f /12π = 7.2 × 10−9 kg/s.
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Figure 2.5: (A) Experimental recording of the radius of a SonoVue® bubble versus
time, with the fast framing camera Brandaris (beginning of a 2.9 MHz pulse with
an acoustic pressure of 130 kPa). (B) Simulation. The fitted shell parameters are
Rbuckling = R0 = 0.975 µm, χ = 1 N/m, κs = 15 × 10−9 kg/s and σbreak−up > 1

N/m (resistant shell). The liquid properties are ρl = 103 kg/m3, µ = 0.001 Pa.s, c =
1480 m/s, and the polytropic gas exponent is κ = 1.095.

2.3.2 Aging of micro-bubbles: effect on the oscillation response

The initial effective tension of the monolayer depends on the history
of the bubble. During their formation in the vial, lipid molecules are
adsorbed at the interface, which reduces the effective surface tension, in
proportion to the surface concentration n/A of adsorbed lipid molecules.
The bubble is initiated in the tensed elastic state, its area being above the
buckling area, Abuckling = n ∗ abuckling.

Dissolution of the gas in the surrounding liquid will ’deflate’ the
bubble and reduce its area towards a tension-less state (like the deflation
of a rubber balloon), below which the bubble will buckle. In the tension-
less state dissolution is much slower, since the capillary overpressure
(typically an atmospheric pressure for micrometer sized bubbles) van-
ishes and the rate of radius decrease is proportional to inside pressure
(which determines the dissolution concentration in the liquid according
to Henry’s law). Bubbles therefore spontaneously tend to their buckling

radius, and then shrink much more slowly, compared to bubbles of
constant surface tension. The reduction of surface tension is the main
mechanism to account for increased longevity from the coating, since the
gas permeability of 16 and 18-carbons phospholipids coatings is high [8].
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Figure 2.6: Experimental recordings of repeated acoustic pulses of 100 kPa on a
single bubble, separated by 50 ms (break of time at vertical lines). The oscillation
asymmetry increases pulse after pulse. (Frequency is increasing from 1.5 to 4 MHz,
inducing amplitude changes).

Experiments show that asymmetric oscillations become more pro-
nounced in the course of dissolution, see Fig. 2.6. Our interpretation is
that the bubble reaches the tension-less state, where buckling occurs.
According to the present model, the asymmetry is the signature of the
variation in surface tension during each cycle, and this variation is the
highest near buckling.

The asymmetry can be monitored by the ratio ∆R+/∆R− of the
positive and negative radius excursions (defined by ∆R+ = max(R) − R0

and ∆R− = R0 − min(R), both materialized on Fig. 2.5B). Simulations
demonstrate indeed that the compression-only asymmetry (∆R+/∆R−

<

1), is the more pronounced when R0/Rbuckling ∼ 1 (see Fig. 2.7), the
tension asymmetry during the oscillation being maximal.

This behavior is to be contrasted with the large amplitude oscillation
of bubbles with a constant surface tension, which tends to produce higher
positive excursions. It is seen on the same figure when the bubble
radius is well above Rbuckling (free bubble state, σ = σwater) or well below
Rbuckling (tension-less state, σ = 0). The response curve slightly depends
on frequency: varying the frequency between 1 and 4 MHz changes
∆R+/∆R− by about 10%.

Repeated pulses on a bubble accelerate the gas dissolution, as ev-
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Figure 2.7: Simulated asymmetry of the oscillation for varying starting radii.
Acoustic pulse and shell properties: same as Fig. 2.5.

idenced on Fig. 2.6 by the sudden decrease after the first pulse and
the subsequent pulses. Two mechanisms could account for this effect.
First, the initial pulses may expel some lipid molecules and reduce the
buckling radius, to which the bubble will relax. Another explanation
would be an ’inverse’ rectified-diffusion generated by compression-only
behaviors. The gas pressure increases during the compression phase,
while it remains close to the pressure at rest during expansion (a sym-
metric oscillation would alternately compress and expand the gas). The
concentration of gas in the liquid near the interface being proportional
to gas pressure (Henry’s law), the asymmetry, even small, tends to force
more gas out of the bubble. This ’inverted’ rectified-diffusion would
be the opposite of the usual rectified-diffusion effect that counteracts
dissolution for free gas bubbles [25].

A quantitative evaluation of this effect follows from the expression of
the rate of dissolution of an oscillating bubble [25, 26]
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d

dt
R(t) =

Dc0

ρgR(t)
2

(

c∞

c0
− Pg(t)R(t)4

P0R(t)4

) (

∫ ∞

0

dh′

(3h′ + R(t)3)4/3

)−1

,

(2.7)
where the overline is the average over one period, this equation being
valid for an evolution slow at the scale of the period. The diffusivity of
the gas is D, its volumic mass ρg, its saturation concentration c0 and
its concentration far from the bubble c∞. The last factor containing
an integration along the variable h′ does not changes sign, and tends
to R4 for small amplitude oscillations. A compression-only signal pro-
duces a stronger ’averaged’ pressure term Pg(t)R(t)4/R(t)4 (for instance
it amounts to 1.2P0 from the simulation of Fig. 2.5B), which accelerates
dissolution. Even at Rbuckling, where the capillary overpressure vanishes,
inverted rectified diffusion can force dissolution in a fully saturated liquid
with c∞/c0 = 1.

2.3.3 Rupture of the shell

The shell can withstand finite tensions only in its shell: starting from a
compression-only signal and increasing the acoustic pressure step by step
shows that a strong positive radius excursion suddenly appears above a
critical pressure (see Fig. 2.8A). In this new state, the bubble oscillates as
a free bubble: we interpret this behavior as the effect of the shell rupture.

To model the rupture, we assume that above a critical tension, σbreak−up,
the shell breaks up and that part of the bubble surface is uncovered. Once
this threshold has been reached, the surface tension upper bound will be
the surface tension of water, σwater. We can therefore simulate the effect of
an increasing acoustic pressure on a bubble (see Fig. 2.8B).

The compression-only behavior (∆R+/∆R−
< 1) is interrupted by

the break-up of the shell: the non-linear behavior then favors positive
excursions of the radius, as seen in experiment, as for standard large
pressure Rayleigh–Plesset dynamics (see Fig. 2.9).

2.4 Conclusions

We presented a simple model for the dynamical properties of coated
contrast agents bubbles, with three parameters: a buckling surface ra-
dius, a shell compressibility and a break-up shell tension. It predicts a
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Figure 2.8: (A) Experimental recordings of a BR14 bubble response to repeated
2 MHz pulses separated by 60 ms, with an increasing acoustic pressure. (B)
Simulation with the same acoustic pressures. The fitted shell parameters are
Rbuckling = R0 = 0.82 µm, χ = 1 N/m, κs = 7.2 × 10−9 kg/s, while the critical
break-up is σbreak−up = 0.13 N/m.

compression-only behavior of the bubble, a highly non-linear response. It
occurs when its radius is close to the buckling radius, a state that naturally
occurs with dissolution of gas, or that can be accelerated by repeated
pulses. High-frequency image recordings with lipid coated microbubbles
reveal the existence of such asymmetric oscillations, and validate the
model. The break-up of the shell is modeled by a third parameter, a finite
tension of the bubble shell above which bare interfaces are created, with
a corresponding change in bubble dynamics.

Possible applications of the model include: the characterization of
coated microbubbles, the description of acoustic echoes and their use in
non-linear or pulse-inversion imaging, and the prediction of the effect of
repeated pulses or of long-term experiments.

2.5 Appendix: Comparison with the elasticity of a

solid shell layer

Like monolayer coatings, the elasticity of a thin solid shell of thickness
ǫ ≪ R is characterized by a two-dimensional compression modulus χ =
A dσ

dA , where σ is the isotropic in-plane tension (shear of the surface does
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Figure 2.9: Effect of an increasing acoustic pressure on the asymmetry of the
response (same parameters as in Fig. 2.8B).

not occur with a radial expansion, and bending is neglected assuming
an initial curvature close to the spontaneous curvature). Additionally,
the solid shell has two interfaces, with a surface tension σ1 for the inner
interface and σ2 for the outer interface. The mechanical equilibrium
balance for any small change in bubble area around the tensionless shell
area A0 reads δW = χ(A/A0 − 1)dA + σ1dA + σ2dA − (Pg − Pl)dV =
0, from which we obtain the pressure jump at the liquid-gas interface
Pg − Pl = 2(σ1 + σ2 + χ(A/A0 − 1))/R. The effective surface tension of
the shell thus reads:

σ = σ1 + σ2 + χ

(

R2

R2
0

− 1

)

, (2.8)

it is a linear function of the bubble area, like in the lipid monolayer coated
bubble model (Eq. (2.1) for the elastic state, with σ(R0) = σ1 + σ2).

The model for a thick elastic shell by Church [27] provides the same
effective surface tension law when the shell thickness ǫ tends to be small
compared to the radius. In this model the shell has a bulk shear modulus
Gs and is incompressible in volume (the thickness thus varies around
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its equilibrium value during the oscillation). From the Church model at
small thicknesses we find that the shell contribution can be expressed
with an effective tension law as in equation (2.8), using a two-dimensional
elastic modulus χ = 3Gsǫ, which is a classical result of the elasticity of thin
plates [28].
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3
Microbubble spectroscopy of

ultrasound contrast agents§

We present a new optical characterization of the behavior of single ultra-

sound contrast bubbles. The method consists of insonifying individual

bubbles several times successively sweeping the applied frequency, and

to record movies of the bubble response up to 25 million frames per

second with an ultra-high speed camera operated in a segmented mode.

The method, termed microbubble spectroscopy, enables to reconstruct a

resonance curve in a single run. We analyze the data through a linearized

model for coated bubbles. The results confirm the significant influence of

the shell on the bubble dynamics: shell elasticity increases the resonance

frequency by about 50%, and shell viscosity is responsible for about 70% of

the total damping. The obtained value for shell elasticity is in quantitative

agreement with previously reported values. The shell viscosity increases

significantly with the radius, revealing a new nonlinear behavior of the

phospholipid coating.

3.1 Introduction

Medical ultrasound imaging is based on scatter and reflection of sound
from inhomogeneities in the tissue [1]. The scatter from blood is much
weaker than the scatter from tissue. To increase the scattering properties
from the blood pool, an ultrasound contrast agent (UCA) is introduced in
the blood. An UCA is a liquid, containing small encapsulated microbub-
bles, which very efficiently scatter ultrasound [2–4]. In this way, it is

§Based on: Sander M. van der Meer, Benjamin Dollet, Marco M. Voormolen, Chien
Ting Chin, Ayache Bouakaz, Nico de Jong, Michel Versluis, Detlef Lohse, "Microbubble
spectroscopy of ultrasound contrast agents", J. Acoust. Soc. Am. 121(1), 648-656 (2007)

33
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possible to visualize and quantify the perfusion of tissue, like for instance
the heart muscle, liver or kidney. Contrast agents are nowadays used in
various medical investigations, e.g. in obtaining diagnostic information
from the volume and shape of the heart ventricles, or to quantify the
perfusion of various organs, like liver or kidney.

The fundamental understanding of the dynamics of contrast bubbles
is a field of ongoing research. For example, the quantification of the
response of contrast bubbles to ultrasound is an important research
aspect. Until now, bubbles are characterized mainly by studying acous-
tically a representative sample of the UCA, containing many microbub-
bles [5–7]. From this data the overall resonance behavior of the sample
can be deduced. Ideal contrast agents would be monodisperse in size,
but in practice they have a size distribution which can be measured
with, e.g., a Coulter counter, resulting in a mean size and size range
[8]. For SonoVue® and also for BR-14 (Bracco Research S.A., Geneva,
Switzerland), e.g., the mean radius is 1.5 µm, with 95% of the bubbles
smaller than 10 µm. The polydispersity of the microbubbles makes
it difficult to extract information on the physical properties of single
bubbles, since the acoustical response of a bubble strongly depends on
its size [8]. Furthermore, the acoustic pressure signal emitted by the
bubbles is distorted by frequency dependent scattering and attenuation.
On the other hand, measuring the acoustic response of a single individual
contrast bubble is a difficult task [9]. First, it is difficult to isolate a single
bubble in the focal region of a transducer: this would require at least 1 mm
of distance between the bubbles. Second, extracting the absolute pressure
emitted by the bubble from the measured response requires an accurate
calibration of the transducer transfer function.

To overcome the difficulties associated with acoustical characteriza-
tion, optical methods have been proposed [10–14]. Such methods are
based on the direct measurement of the bubble radius, which, unlike
the acoustical response, is not subject to distortion and in principle does
not require difficult calibration. Furthermore, the interaction between
bubbles (secondary Bjerknes forces) decays as the inverse square of
their distance, fast enough to consider different bubbles to oscillate
independently as soon as they are separated by a few (roughly ten)
bubble radii. Isolating the response of a single bubble optically is thus
less constraining than for acoustical measurements. However, optical
methods exhibit other drawbacks: very high frame rates are required to
resolve microbubble oscillations at several MHz, and the resolution is
limited, since the microbubble size is just a little higher than the optical
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resolution.
Here, we present a new optical method, that we term bubble spec-

troscopy, to characterize individual contrast bubbles. To resolve the os-
cillations of such bubbles, we use the ultra-high speed camera Brandaris
[15], used in a segmented mode described in detail in Sec. 3.2: we scan
the insonation frequency to reconstruct a resonance curve, from which
we extract the resonance frequency and the total damping coefficient.
The experimental methods are detailed in Sec. 3.3. In Sec. 3.4, we present
the main results: we quantify the change of the resonance frequency with
the radius, and discuss the influence of shell elasticity. We also quantify
damping and show the influence of shell viscosity. We further discuss the
accuracy of the proposed method in Sec. 3.5.

3.2 Bubble spectroscopy

3.2.1 The microbubble as a linear oscillator

For small enough acoustic forcing, it is well known [16, 17] that a bubble
behaves as a linear oscillator; its relative radial excursion x, defined as
R = R0(1 + x), obeys the equation:

ẍ + ω0δẋ + ω2
0x = F(t), (3.1)

with f0 = ω0/2π the eigenfrequency of the system and δ its (linear) di-
mensionless damping coefficient (equivalently, one can define the quality
factor Q = 1/δ), and F is the forcing term.

The amplitude of the radial variation of the bubble depends of the
driving frequency f = ω/2π. Writing F(t) = F0 sin ωt and x(t) =
x0 sin(ωt + ϕ), one gets from Eq. (3.1):

x0(ω) =
F0

√

(ω2
0 − ω2)2 + (δωω0)2

. (3.2)

This equation defines the resonance curve, displaying a maximum at
the resonance frequency:

fres = f0

√

1 − δ2

2
, (3.3)

which is lower than the eigenfrequency in the presence of damping.
Strictly speaking, Eq. (3.3) holds only if the damping coefficient δ is inde-
pendent of ω. The main objective of our bubble spectroscopy method is
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to fully characterize the linear response of single bubbles, by constructing
its resonance curve and extracting from that the eigenfrequency and
the damping coefficient. We show this on a simulation example in the
following Subsection, and on experiments in Sec. 3.3.

3.2.2 Simulation example: power spectrum and resonance curve

As an example, we derive the resonance frequency and the damping
coefficient from a numerical simulation. We compute the time evolution
of the radius of a coated bubble subjected to an acoustic pressure, using
the following model, adapted from Marmottant et al. [18]:

ρl

(

RR̈ +
3

2
Ṙ2

)

=

[

P0 +
2σw

R0

] (

R

R0

)−3γ (

1 − 3γ

c
Ṙ

)

−P0 −
2σw

R
− 4χ

(

1

R0
− 1

R

)

−4µṘ

R
− 4κsṘ

R2
− P(t), (3.4)

where R, Ṙ and R̈ represent the radius, velocity and acceleration of
the bubble wall (R0 being the equilibrium radius), ρl = 103 kg/m3 the
volumetric mass of water, P0 = 105 Pa is the ambient pressure and P(t)
the driving acoustic pressure, and γ the polytropic exponent; since the
oscillations are fast, Pe = R2

0ω/Dth ≫ 1 [18] for bubbles of several
microns in size in the MHz regime (here, Dth = 2 × 10−6 m2/s is the
thermal diffusivity of C4F10), we assume that this exponent equals the
ratio of specific heats, γ = 1.07 for C4F10. Furthermore, c = 1.5 · 103 m/s
is the speed of sound in the fluid, σw = 0.072 N/m the surface tension, µ
the dynamic viscosity and P(t) is the acoustic pressure. Eq. (3.4) is based
on the Rayleigh–Plesset equation, commonly used to model the behavior
of bubbles (see Refs. [19–21] for general reviews on this subject) with two
additional parameters to model the shell: an elasticity parameter χ (in
N/m), and a shell viscosity κs (in kg/s) [27]. Various models including
the shell properties in the Rayleigh–Plesset equation have already been
proposed to model contrast agent bubbles [13, 18, 22–26]. Most of these
models [13, 23–25] consider a shell of finite thickness, modeled as a 3D
continuous medium, which may not be satisfactory for a monolayer shell.
This is why Eq. (3.4) is inspired from models considering the shell as a 2D
viscoelastic medium [18, 26]. More precisely, Eq. (3.4) is closely related
to the model of Marmottant et al. [18], who suggested to model shell
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elasticity through a radius-dependent surface tension over a certain range
of radii (elastic range), below which the bubble buckles and above which
the shell breaks. Basically, Eq. (3.4) would correspond to an infinite elastic
range, which is relevant in this study, since we use low enough acoustic
pressures to avoid both buckling (associated to nonspherical oscillations)
and rupture (which would lead to fast bubble dissolution). Eq. (3.4) is also
related to the model of De Jong et al. [22] by a more physical description
of radiation and viscous damping. For the sake of simplicity, we account
in this model for thermal damping as an effective viscosity, taking µ =
2 × 10−3 Pa s, thus twice that of water.

Linearization of Eq. (3.4) yields the following eigenfrequency in the
elastic regime:

f0 =
1

2π

√

1

ρR2
0

[

3γP0 +
2(3γ − 1)σw

R0
+

4χ

R0

]

. (3.5)

This eigenfrequency has two contributions: the Minnaert frequency [28],

fM =
1

2π

√

1

ρR2
0

[

3γP0 +
2(3γ − 1)σw

R0

]

, (3.6)

i.e., the eigenfrequency of an uncoated bubble, and a shell contribution
which increases the eigenfrequency.

The linearization of Eq. (3.4) gives also the expression of the total
damping coefficient: δtot = δrad + δvis + δshell, with a contribution coming
from the sound re-radiated by the bubble, which writes at ω = ω0 [16]:

δrad =
ω0R0

c
, (3.7)

a viscous contribution:

δvis =
4µ

R2
0ρω0

, (3.8)

and a shell viscosity contribution:

δshell =
4κs

R3
0ρω0

. (3.9)

To be rigorous, a direct derivation from Eq. (3.4) gives an expression of
δrad slightly different that the classical expression (3.7), but the order of
magnitude remains the same, and we will see in Sec. 3.4.2 that radiation
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is a secondary contribution to the total damping. We will thus keep the
expression (3.7) for the radiation damping.

We compute Eq. (3.4) with a bubble of ambient radius R0 = 2.8 µm.
We numerically solve the bubble response R(t) to an ultrasound burst of
8 cycles, whose two first and two last cycles are modulated by a Gaussian
envelope, as in experiments. The acoustic amplitude is Pa = 1 kPa to
minimize nonlinear effects, and the frequency range was chosen around
the estimated resonance frequency, from 1.5 MHz to 2.5 MHz. Next,
we apply a FFT algorithm on each R(t)-curve to compute its Fourier
transform, and we take the square of this quantity: we get thus the
power spectrum PR of the radius-time curve. Typical R(t)-curves and
their corresponding power spectra are shown in Fig. 3.1. At resonance,
more energy goes into the oscillation than off-resonance. We quantify this
effect by taking the area in the power spectrum in a band of ∆ f = 175 kHz
around the maximum frequency fmax, which we term the response:

Re =
∫ fmax+

1
2 ∆ f

fmax− 1
2 ∆ f

PRd f .

The choice for a value of 175 kHz was found to be a suitable bandwidth
for our data analysis. The total area in the power spectrum of the signal
is an equivalent measure for the resonance, because nearly all the area in
the power spectrum of the signal is located in the fundamental peak. We
decided to take the area in a band around the peak, and we verified that
the results are indeed in accordance.

We now redetermine the eigenfrequency and the total damping out
of the resonance curve, in order to establish and verify the method we
want to apply to the experimental data of Sec. 3.3. To do so, we fit the
data points to the response of a harmonic oscillator (Eq. (3.2), which we
rewrite as

Re( f ) =
Re0

(1 − f 2/ f 2
0 )2 + (δ f / f0)2

. (3.10)

From the best fit of the data points (shown in Fig. 3.2 for our simu-
lation example), we extract the eigenfrequency f fit

0 = 2.07 MHz and the
damping coefficient δfit

tot = 0.24. We will motivate why we analyze the
power spectrum, and not directly the radial oscillations, in Sec. 3.3.2.
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Figure 3.1: Simulated response of a bubble of initial radius R0 = 2.8 µm to an
ultrasound wave of 1 kPa of different frequencies. Left: radius-time response;
right: power spectrum. The resonance frequency is at 2.07 MHz.
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Figure 3.2: The simulated response (solid line) of a free 2.8 µm gas bubble on
ultrasound bursts of 1 kPa, ranging in frequency from 1 to 3 MHz. The dashed
curve is the fit to a harmonic oscillator (Eq. (3.10)) giving f fit

0 = 2.07 MHz and

δfit
tot = 0.24.

3.2.3 Analysis of the resonance curve

From the resonance curve obtained in the simulation example, we can
determine the position where the amplitude of the oscillation is maxi-
mum, i.e. the resonance frequency: f curve

res = 2.02 MHz. The best fit
curve to the simulation data displays a resonance frequency compatible
within 1% error: f fit

res = 2.04 MHz. The resonance frequency is lower
than the eigenfrequency f fit

0 = 2.07 MHz because of damping, but the
shift remains very small. The resonance frequencies f curve

res and f fit
res fully

agree with the theoretical estimate (Tab. 3.1). Second, the peak width
is directly related to the total damping of the system δtot. A sharp peak
indicates low damping, whereas a broad peak indicates high damping.
More precisely, the width ∆ f of the response peak at half the maximum
amplitude obeys: ∆ f / f0 = δtot. Measuring the width of the peak in Fig. 3.2
gives the following value for the damping coefficient: δcurve

tot = 0.25, in
excellent agreement with the theoretical value: δth

tot = 0.24 and the value
obtained from fit: δfit

tot = 0.24. This excellent agreement between the
theory, the simulation curve and the fitting curve (Tab. 3.1) shows that
our fitting procedure on the oscillation response is an accurate method to
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f0 (MHz) δtot fres (MHz)
Theory 2.06 0.24 2.03

Simulation curve — 0.25 2.02
Fitting curve 2.07 0.24 2.04

Table 3.1: Comparison of the eigenfrequency f0, the damping coefficient δtot and
the resonance frequency fres (related through Eq. (3.3)), from the theory (Eqs. (3.5)
to (3.9)), the simulation curve and its fitting curve (Fig. 3.2).

extract both the eigenfrequency and the damping coefficient.
For a linear oscillator, the phase lag ϕ between the forcing term and

the oscillator response is, according to Eq. (3.1):

tan ϕ =
δtot

f0

f − f
f0

. (3.11)

If the oscillator is driven at frequencies well below resonance, it is in phase
with the driving force (ϕ = 0). As the frequency is increased towards
resonance, the displacement tends to lag behind the driving, so that at
resonance the displacement has a phase shift of π/2. When the oscillator
is driven at frequencies much greater than resonance, the displacement is
in antiphase with the driving force (ϕ = π). In principle, measuring also
the phase difference between ultrasound driving and bubble response
could be used to determine the resonance frequency of contrast bubbles
from experimental data. However, this requires precise timing. Therefore,
presently we focus on the oscillation response.

3.3 Experiments

3.3.1 The setup

The experimental setup is schematically drawn in Fig 5.1. A dilute
solution of individual BR-14 contrast bubbles (Bracco Research S.A.,
Geneva, Switzerland) is prepared and injected through a capillary fiber of
diameter 200 µm immersed in water. The bubbles are illuminated from
below with an optical fiber and an image is produced by an Olympus
microscope with a 100× water-immersed objective and a 2× magnifier.
We carefully check that only single bubbles are present in the field of
view of the microscope. The image is relayed onto a CCD camera for
orientation and size estimation, and simultaneously onto the Brandaris
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Figure 3.3: The experimental setup: an arbitrary waveform generator produces
ultrasound signals that are amplified by an amplifier and led to a transducer.
Contrast bubbles are injected through a 200 µm capillary fiber perpendicular to
the plane of the figure. The contrast bubbles are imaged from the top through a
100× objective and illumination is provided from the bottom.

high-speed camera [15]. The camera can record six movies of 128 frames
at up to 25 million frames per second. Furthermore, the camera was
designed to operate in a segmented mode, in fact specifically to accom-
modate microbubble spectroscopy. In practice, the conventional single
acquisition of 128 frames was replaced by recording two segments of 64
frames each, or four segments of 32 frames each. The camera houses
memory space for six conventional acquisitions of 128 frames, before the
images are transferred to the PC. Using two segments, this procedure
results in the recording of 12 sets of 64 frames. Using four segments
has the advantage of an increased frequency resolution (24 instead of
12), but reduces the sampling of the movies from 64 to 32 frames. The
camera is operated at a framing rate of 15 million frames per second. The
segmented mode allows us to construct a resonance curve of the bubble
in a single acquisition, in less than one second.

The experiments described here were always done within 6 hours after
the preparation of the contrast bubbles, to rule out potential changes
in bubble behavior due to aging. The bubbles were introduced through
the capillary fiber in the focus of the microscope. Once we identified
a single bubble, we estimated its radius from the images of the CCD
camera, and estimated its approximate resonance frequency through the
Minnaert equation (3.6), taking into account that the shell elasticity shifts
the resonance frequency up. The bubble was then subjected to a scan
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of 12 (or 24) different frequencies, in a range of roughly 1 MHz below
and above the expected resonance frequency. The contrast bubbles were
insonified from the side by a broadband single element transducer (Preci-
sion Acoustics, PA081) with a center frequency of 1.7 MHz and a calibrated
range of frequencies from 0.7 to 6 MHz. An arbitrary waveform generator
(AWG), a Tabor 8026, connected to a PC, was used to produce the required
waveforms, which were then amplified by an ENI 350L amplifier. The
length of the ultrasound waveforms was 8 cycles, of which the first two
and the last two were tapered taking a Gaussian envelope. The bubbles
were investigated with sequential bursts of the ultrasound waveforms,
with an acoustic pressure kept as low as possible to minimize nonlinear
responses. In this paper, we present only results at driving pressures lower
than 40 kPa. This prevented us from studying bubbles smaller than 1.5 µm
in radius, since these bubbles do not oscillate significantly at these small
pressures [40]. The pressures generated by the broadband single element
transducer was calibrated with a 0.2 mm needle hydrophone (Precision
Acoustics, SN1033). To maintain a constant pressure in the focus, we
compensated for the frequency-dependent response of the transducer by
adjusting the amplitude of the waveforms of different frequencies. The
programming of the waveforms was done in Matlab. The waveforms were
transferred to the AWG via a general purpose interface bus (GPIB).

3.3.2 Radius-time curves determination

From the images, we extract the radius-time information. The radius-
time curves of individual bubbles were measured using a so-called dy-
namic programming algorithm [29]. The center of the bubble of interest
is annotated in the first frame of the recording. This center point was
then used to radially resample the bubble and its direct surrounding. The
resulting image was used as an input to the algorithm to find the optimal
path along the contour of the bubble. After transforming the contour back
into the recorded frame the average bubble radius and corresponding
center are determined. This center point is then used to repeat the above
procedure for the next frame. After running through all frames the radius-
time curve of the bubble is obtained. Through a calibration grid the
conversion between pixels and micrometers is performed.

To quantify the amplitude of oscillations of a bubble, the simplest
method would be to find the maximum and minimum radial excursion
during the insonation. However, in experiments, this proved not to be
the most accurate measurement for several reasons. First of all, due to
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the finite sampling frequency of the signal, there is a difference between
the recorded extrema and their actual values. Furthermore, the extrema
need to be determined from only a few cycles of the bubble oscillation.
Second, in experiments an off-resonance oscillating bubble often shows
an amplitude overshoot in the first few cycles. Although we tried to
minimize this by using a Gaussian envelope, it is somehow arbitrary to
choose which of the extrema shows the real amplitude for that particular
frequency and pressure. For all these reasons, we rather work on the
Fourier transform of the radius-time curve. It also presents a maximum
amplitude at resonance, and since it is an integrated quantity over the full
R(t) signal, it is much less sensitive to the sampling rate and to the short
transients and overshoots of the R(t) curve. In the following Section we
describe the subsequent analysis.

3.3.3 Data processing

From the images, the radius-time curves for each individual bubble were
measured for each frequency component. An example of such a curve is
shown in Fig. 3.4.

We treat the radius-time curves as in Sec. 3.2.2: for each scanned
frequency, we calculate the area in the power spectrum in a band around
the maximum frequency, as the quantifier of the amplitude of bubble
oscillation (Fig. 3.4). Plotting the results yields an experimental resonance
curve which we fit to the linear oscillator expression (Eq. (3.10)). Three ex-
amples of such resonances curves are displayed in Fig. 3.5. We then record
for each experiment the two following fitting parameters of Eq. (3.10): the
eigenfrequency f0 and the damping coefficient δtot. After careful selection
(correct pressure, no significant shrinking of the bubble by loss of gas
during insonation), we present 22 experimental data points.

3.4 Results

3.4.1 Eigenfrequency

In Fig. 3.6, we report the eigenfrequency f0 = ω0/2π, obtained as
explained in Sec. 3.3.3, for 22 experiments. As expected, the measured
eigenfrequencies decrease with the bubble radius. They are also signifi-
cantly higher than the Minnaert frequency (Eq. (3.6)), which confirms the
influence of the shell. To quantify this influence, we fit the data points
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Figure 3.4: Experimental radius-time curves (left column), and corresponding
power spectra (right column), for a bubble with an ambient radius of 1.7 µm
during a scan of insonifying frequencies.
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Figure 3.5: Experimental resonance curves for three different bubbles, and the
corresponding fits by Eq. (3.10).

to Eq. (3.5). The best fit yields the following value of the shell elasticity
parameter: χ = 0.54± 0.10 N/m, the error bar coming from the dispersion
of the experimental data.

The value of χ is fully compatible with the previously reported values
for SonoVue®. Using the model of De Jong et al. [22], which is similar to
the model of Marmottant et al. [18] used here in the linear regime, Gorce
et al. [8] gave a value of χ = 0.55 N/m based on four analyzed samples.
Marmottant et al. derived from their model a value of χ = 1 N/m on a
single example for the shell elasticity.

3.4.2 Damping

We now consider the damping coefficient, which is derived from the
experimental data points by fitting to Eq. (3.10) (see Fig. 3.5). The
damping coefficient is determined as a function of the bubble radius. The
variation in the datapoints is not clearly correlated to the radius, so we
rather present a typical example for a bubble of resting radius R0 = 1.9 µm,
see Fig. 3.7.

Damping arises from various sources: re-radiation of sound by the
bubbles, thermal diffusion, bulk and shell viscosity. In the example of
Fig. 3.7, we compute from Eqs. (3.7) and (3.8) δvis = 0.032 and δrad = 0.022,
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radius. The solid curve shows the Minnaert frequency (Eq. (3.6)). The dashed curve
shows the resonance frequency including shell elasticity. The best fit with Eq. (3.5)
yields the following value for shell elasticity: χ = 0.54 ± 0.10 N/m.
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Figure 3.7: Example of an experimental resonance curve for a bubble with a resting
radius R0 = 1.9 µm. The solid curve is the fit to Eq. (3.10), giving f0 = 2.56 MHz
and δtot = 0.26. The dashed line shows the fit to Eq. (3.10) with an imposed
damping coefficient δtot = 0.07 (see text) without shell damping.
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given the radius R0 = 1.9 µm and the eigenfrequency f0 = 2.56 MHz.
Thermal damping is more difficult to express; from [30] and the value of
the thermal diffusivity for C4F10, we get δth = 0.02. These three sources
give a contribution of 0.07 for the damping coefficient. We plot the
resonance curve corresponding to this value in Fig. 3.7: clearly, this curve
is too sharp to fit correctly the data, showing the significance of a fourth
source of damping, arising from shell viscosity. More precisely, the fit
to Eq. (3.10) with all free parameters gives a significantly higher value of
the total damping coefficient, namely δtot = 0.26. This implies a value
of δshell = 0.19 for the extra damping through the shell: in this example,
shell viscous damping is thus responsible for 73% of the total damping; in
average, this proportion is 68%: the shell is therefore the major source of
damping. This result confirms existing studies [31], which showed the
significant influence of the shell viscosity on the resonance properties
of contrast bubbles. For the total set of 22 data points the value of the
shell damping ranged from 0.05 to 0.4. The shell damping shows no clear
dependence with the radius, see Fig. 3.8(A).

From δshell we can easily calculate the shell viscosity κs, see Eq. (3.9).
In the example of Fig. 3.7, this gives κs = 2.3 · 10−8 kg/s. Analyzing
all data points, we find a significant increase of the shell viscosity with
the radius of the bubble (see Fig. 3.8(B)), as already reported in [13].
However, plotting κs as a function of the dilatation rate of the shell offers
a more physical picture in terms of surface rheology. We estimate the
dilatation rate as: Ṙ/R ≈ ω∆R/R0 ≈ 2π f0∆R/R0, where ∆R is the
maximum amplitude of the radial oscillations. We plot κs versus the
estimated dilatation rate in Fig. 3.8(C). The plot shows a clear decrease of
the shell viscosity with the dilatation rate, which may be the signature of a
rheological thinning behavior of the phospholipid monolayer shell. Such
a behavior has already been observed for monolayers of myristic acid [32]
and of poly(vinylacetate) [33]. Furthermore, the order of magnitude of the
shell viscosity is 10−8 kg/s, which is compatible with previously reported
values of 0.72 · 10−8 kg/s [8] and 1.5 · 10−8 kg/s [18].

3.5 Discussion and conclusions

3.5.1 Accuracy of the measurements

We discuss here various sources of bias of the measurements: shrinking
of bubbles, compression-only behavior, and uncertainty on the measured
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Figure 3.8: (A) Experimentally determined shell damping δshell, plotted versus
the ambient bubble radius R0. (B) Experimentally determined shell viscosity κs,
plotted versus the ambient bubble radius R0. (C) Plot of the shell viscosity as a
function of the estimate of the dilatation rate 2π f0∆R/R0.

radius.
After each burst of ultrasound, some gas may escape from the bubble,

reducing the resting radius of the contrast bubble. This unwanted effect is
minimized by keeping the ultrasound pressure as low as possible, yet high
enough to be able to distinguish the oscillation of the contrast bubble
at different frequencies. Great care was taken to verify that the initial
resting radius was equal to the final resting radius. In our experiments,
we only considered oscillations with a relative decrease in radius less than
10%, hence we assume that the properties of the bubble do not change
significantly during the insonation cycle. There is also no difference seen
in an ascending or a descending frequency sweep.

Another difficulty is a nonlinear phenomenon referred to as “com-
pression-only” behavior [34], due to the shell mechanical properties [18].
In the data analysis we included only data for which the ratio between
the maximal extension and compression from the equilibrium radius is
higher than 0.9: compression-only is then negligible.

There is also an uncertainty in the resting radius: since it equals only a
few microns, bubbles behave like Mie scatterers [35], hence they create a
complicated combination of diffraction and scattering in the focal plane



50 3. MICROBUBBLE SPECTROSCOPY

of the camera. This leads to some uncertainty in the image analysis, since
the transition in contrast between bubble and background is gradual. The
edge detection, described in Sec. 3.3.2, at the dark-bright interface at the
edge of the bubble will in many cases not give the correct initial bubble
radius. Only in the case of in-focus, on-axis, incoherent illumination with
a sufficiently high imaging resolution the lowest cost at the dark-bright
interface will give the correct bubble radius estimation. In all other cases,
the cost needs to be slightly different, depending on the imaging system
characteristics like system coherency, objective NA, and abberations (like
focus error). In our case we estimate the error we make in the radius
estimation at around 10%.

3.5.2 Nonlinear pressure and wall effects

The frame rate of 15 million frames per second that was used in the
experiments enabled us to resolve the oscillations of the bubbles, to get
precise power spectra (Fig. 3.4), and resonance curves (Fig. 3.5). We
extract a resonance frequency by fitting the observed resonance curves
with a linear oscillator response, neglecting the nonlinear influence of the
acoustic amplitude, which may be questionable: numerical calculations
for uncoated bubbles show that resonance curves become asymmetrical
(skewed), and the maximum shifts to a lower frequency. For a driving
pressure of 40 kPa the relative decrease of the resonance frequency has
been reported to be as large as 10% [36, 37]. To address this question
for coated bubbles, we perform the same simulation as in Sec. 3.2.2 with
Pa = 40 kPa, which is the maximum value used in experiments, and
compare the resonance curve with the one of Fig. 3.2 (see Fig. 3.9). We
find no significant difference, neither in eigenfrequency nor in damping
coefficient: the shell elasticity seems to counterbalance the nonlinear
effect of pressure.

The presence of the top capillary wall, against which the bubbles rest
because of buoyancy, is also expected to affect the resonance frequency
[38, 41]. As a first approximation, the wall can be modeled as an image
bubble, which yields the following prediction of the eigenfrequency of
a bubble in contact with a wall: fwall = f0

√
2/3 ≃ 0.82 f0 [39]. More

precisely, we compare the bubble response to an acoustic pressure of
amplitude 1 kPa with and without wall in the same figure, Fig. 3.9.
It shows indeed that the eigenfrequency is lowered in the presence of
the wall by this factor 0.82. Therefore, the wall tends to lower the
resonance frequency; this means that the shell elasticity, 0.54 N/m, that
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Figure 3.9: Resonance curves computed from Eq. (3.4) for an acoustic amplitude
Pa = 1 kPa (solid line, same curve as Fig. 3.2) and 40 kPa (dashed line). Here, the
response has been rescaled by P2

a to allow for comparison. For Pa = 40 kPa we find
f0 = 2.07 MHz and δtot = 0.24. The third line is a simulation with wall present
(dash-dotted line, Eq. (3.4) computed with an additional term modeling the wall
as an image bubble [39]). With wall, we find f0 = 1.69 MHz and δtot = 0.21.

we measured by fitting the experimental data (Fig. 3.6), is underestimated.

3.5.3 Conclusions

We have presented a new, optical method to determine the resonance
frequency of individual ultrasound contrast agents bubbles. This method
relies on the use of an ultra-high speed camera, fast enough to resolve
bubble oscillations at several Mfps. We operate the camera in a seg-
mented mode, and scan the frequency over the bubble resonance. The
bubble response is then recorded at each frequency, and analyzed to
construct its resonance curve, from which a resonance frequency as well
as a damping coefficient are extracted. The results confirm the influence
of the viscoelastic properties of the shell on bubble behavior: The shell
elasticity increases the resonance frequency compared to the uncoated
bubble case and the shell viscosity proves to be a significant source of
damping. Moreover, we showed that the shell viscosity increases with the
bubble radius and suggested an explanation in terms of surface rheology.

The measured value of the shell elasticity, 0.54 N/m, and the order of
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magnitude of the shell viscosity, 10−8 kg/s, are in good agreement with
previous, independent measurements, giving confidence in this method
as an efficient probe of bubble shell properties.
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4
Microbubble shape oscillations

excited through an ultrasound-driven

parametric instability §

An air bubble driven by ultrasound can become shape-unstable through a

parametric instability. Here we report time resolved optical observations of

shape oscillations (mode n = 2 to 6) of micron sized single air bubbles for a

range of acoustic pressures. The observed mode number n was found to be

linearly related to the resting radius of the bubble. Above the critical driving

pressure threshold for shape oscillations, which as expected is minimum at

the resonance of the volumetric radial mode, the observed mode number

n is independent of the forcing pressure amplitude. The microbubble

shape oscillations were also analyzed theoretically by introducing a small

non-spherical linear perturbation into a Rayleigh–Plesset-type equation,

capturing the experimental observations in great detail.

4.1 Introduction

Bubbles insonified by ultrasound will generally exhibit a radial oscillation
mode. In addition, surface waves can be generated through instabilities at
the interface of the liquid medium and the gaseous content of the bubble.
These surface modes have been studied extensively for droplets [1–4]
and millimeter-sized bubbles [5, 6]. Surface mode vibrations for bubbles
were first analyzed theoretically by Plesset [7] and later by Neppiras [8],
Eller and Crum [9] and Prosperetti [10]. The overwhelming interest
in sonoluminescing bubbles in the nineties lead to investigations into

§Based on: Michel Versluis, Peggy Palanchon, Dave Goertz, Ivo Heitman, Sander van
der Meer, Benjamin Dollet, Nico de Jong, Detlef Lohse, "Microbubble shape oscillations
excited through an ultrasound-driven parametric instability", in preparation.
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surface mode oscillations for micron-sized bubbles by several groups,
see e.g. [11–18]. Under sonoluminescing conditions the microbubbles
are driven far away from their volumetric resonance frequency under
relatively high acoustic pressures between 110 and 140 kPa. The fast
timescales under which transients of shape oscillations occur have hith-
erto limited the observations to either photographic snapshots of the
mode vibrations or to a stroboscopic multi-pulsing approach [17].

Here we overcome the difficulties of the observations of the surface
modes through the use of ultra fast imaging. We conducted a set of
controlled measurements for a variety of bubble diameters (radius be-
tween 10 and 50 µm), while investigating the onset of microbubble shape
vibrations, fully resolved in time through the use of ultra high-speed
imaging at 1 million frames per second. The bubbles are driven near their
volumetric resonance frequency at mild acoustic pressures as to allow
the surface modes to build up during insonation through a parametric
instability.

4.2 Experiments

Single air bubbles with a radius ranging from 10 µm to 45 µm were
generated in a regulated co-flow micropipette injector [19]. The injector
allowed for a controlled production of microbubbles, both in radius and
in separation distance. The bubbles were left to rise to the test section at a
downstream distance of 4 cm from the injector. The bubbles were then
insonified with an ultrasound pulse from an unfocused single element
piezoelectric transducer (aperture of 31 mm) consisting of a burst of
10 cycles at a frequency of 130 kHz. Both the first two and the last two
cycles were tapered with a Gaussian envelope. The dynamics of the free
air bubbles was recorded with the Brandaris ultra high-speed camera [20].
The rotating mirror of the camera sweeps the incoming image along a
quarter arc containing 128 highly sensitive CCDs. With a mirror rotation
speed of 20 000 Hz a frame rate of 25 million frames per second can be
achieved. The camera data controller system allows for the recording of
six consecutive recordings of 128 frames each. This functionality was used
to insonify the very same bubble at increasing acoustic pressures in six
incremental steps from zero to 50 kPa for the smaller microbubbles (R0 <

25 µm) and from zero to 150 kPa for the larger ones. A frame rate of 1.25
million frames per second was used in all experiments.

Figure 4.1A shows a selection of high-speed recordings displaying the



4.3 EXPERIMENTAL ANALYSIS 57

Figure 4.1: Growth of a surface mode vibration on a bubble with a radius of 36 µm
as captured with the Brandaris high-speed imaging facility. The bubble is driven
by a 10-cycle ultrasound pulse at a frequency of 130 kHz at an acoustic pressure
of 120 kPa. First, the bubble oscillates in a purely volumetric radial mode (A),
then after 4 cycles of ultrasound (B) the bubble becomes shape-unstable and a
surface mode n = 4 is formed. (C) A selection of surface modes observed for air-
filled microbubbles with a radius ranging from 23 to 45 µm. The bubble radius is
shown below the images.

dynamics of a 36 µm radius bubble driven at an acoustic pressure of
120 kPa. The first frame shows the bubble at rest; the next nine frames
show how the bubble oscillates radially in a spherical volumetric mode.
Figure 4.1B shows the situation after 5 cycles of ultrasound (40 µs after
ultrasound arrival) where the bubble develops a surface mode vibration,
here with a mode number n = 4. When the acoustic driving stops,
the surface mode vibration decays quickly and the bubble recovers its
spherical shape. Many types of surface wave vibration were observed
in the course of the experiments and a compilation of these is given in
Fig. 4.1C.

4.3 Experimental analysis

In Fig. 4.2 the experimental analysis is illustrated. A bubble with a radius
of 33 µm is insonified with a driving pressure of 120 kPa and a frequency
of 130 kHz (Fig. 4.2A), and recorded with a frame rate of 1.13 Mfps. The
high-speed recordings were processed through a dynamic programming
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contour tracing algorithm [21]. This resulted in the position of the center
of mass of the bubble as a function of time and the radius R(θ, t) of the
bubble as a function of angle θ and time t (Fig. 4.2B), and the ambient
radius of the bubble R0 (Fig. 4.2C). The radial excursion as a function of
the angle θ at t=80 µs, is displayed in Fig. 4.2D. A Fourier analysis of the
bubble surface distortions resulted in a power spectrum from which the
surface wave mode number was determined (Fig. 4.2E). Figures 4.2F & G
show the time evolution of the growth of the shape instability is shown,
respectively in a linear-linear and a log-linear scale.

From the analysis it followed, first, that all bubbles initially oscillate
in a radial purely volumetric mode n = 0. Second, we noticed that,
beyond a critical threshold of the acoustic pressure, surface modes can
be generated after several acoustic cycles. The threshold depends on the
ambient bubble radius. The threshold is minimal for those bubbles close
to the volumetric resonance size of 25.1 µm at 130 kHz driving. Third, it
was observed that bubbles have a preferential surface wave mode number
and that the preferred mode number increases with increasing bubble
size. Finally, we found that the preferential surface wave mode number
does not depend on the forcing pressure of the ultrasound burst, provided
it is beyond the threshold.

4.4 Theoretical analysis

Following Lamb’s classical expression [22] for the natural frequency of
oscillation ωn of the n-th surface mode vibration,

ω2
n = (n − 1)(n + 1)(n + 2)

σ

ρR3
0

, (4.1)

which contains cubic terms for both the mode number n and the bubble
radius R0, one would expect a linear relationship between n and R0.
However, if we compare this equation with our data (see Fig. 4.3, in
the box below), the correspondence is quite poor, because Eq. (4.1) in
fact holds for unforced freely oscillating bubbles, while our bubbles are
periodically driven by ultrasound.

The mode preference for acoustically driven bubbles can be calcu-
lated in a theory following the work of Francescutto and Nabergoj [23],
which in turn is based on the spherical stability analysis by Prosperetti [10].
In [23] an expression is derived for the pulsation amplitude threshold for a
surface mode n as a function of the bubble radius. For the full derivation
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Figure 4.2: Experimental data. In (A) the driving pressure Pa(t) is shown on a
shape unstable bubble with an ambient radius of 33 µm is shown. (B) shows
an image of the bubble at t=80 µs. Its contour is tracked by a contour tracing
algorithm. (C) shows the radial oscillations of the bubble. (D) shows the radial
excursion, plotted against the polar angle θ, at t=80 µs. (E) displays the mode
number n which is derived from the Fourier transform of (D), and in both (F) and
(G) the time evolution of the growth of the shape instability is shown, respectively
in a linear-linear and a log-linear scale. The dotted lines in (A), (C), (F) and (G)
indicate t = 80 µs.
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Figure 4.3: The solid lines represent the pulsation amplitude threshold following
Francescutto and Nabergoj [23]. The color coding indicates the mode: red - mode
2, green - mode 3, blue - mode 4, turquoise - mode 5, magenta - mode 6, and yellow
- mode 7. The dominant mode, using the same color coding, is indicated with a
colored area. The experimental data points are included in the box below, using
the same color coding.

we refer to ref. [23]. In short, the mode dynamics were expressed as a
Mathieu equation, based on a linearized Rayleigh–Plesset equation. The
analysis was limited to the sub-resonance oscillations. The separation
line between shape stable and shape instable regions, which is also
named pulsation amplitude threshold, can be calculated. The pulsation
amplitude (defined as C = (R+ − R−)/R0) threshold is given by the
following expression:

Ct =

√

(a − 1)2 + 4p

(− 3
2 a + 2p + 2(n + 1

2 ))2 + q2)
, (4.2)
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where

a =
4(n − 1)(n + 1)(n + 2)σ

ρω2R3
0

(4.3)

p =

(

2(n + 2)(2n + 1)µ

ρωR2
0

)2

(4.4)

q =
6(n + 2)µ

ρωR2
0

, (4.5)

with n the mode number, σ the surface tension, ρ the fluid density,
and µ the dynamic viscosity of the fluid. For each mode, the pulsation
amplitude threshold is plotted in Fig. 4.3. From the thresholds the
dominant surface mode can be derived and this is indicated with a
colored area in Fig. 4.3. The experimental data points are shown in a
box below the pulsation amplitude threshold graph. There is a very good
agreement with the calculated mode preferences.

We now look in more detail into the growth mechanism of the surface
mode vibration. Three types of surface instabilities have been associated
with oscillating bubbles [12, 18]: the parametric instability (over time
scales of the oscillation period), for collapsing bubbles the afterbounce
instability (over time scales of the bubble afterbounces) and for strongly
collapsing bubbles the Rayleigh-Taylor instability (over time scales of the
Rayleigh collapse, order ns). For the mildly oscillating bubbles studied
here the most relevant one is the parametric instability. It exhibits
maximal growth when the time scale of the forcing is of the order of the
time scale of the natural volumetric oscillation frequency. Figure 4.2G in-
dicates that the surface mode amplitude grows exponentially from cycle-
to-cycle and therefore the bubble shape oscillations must be induced by
such a parametric instability.

The parametric instability manifests itself in the growth of initially
small perturbations on the spherical interface R(t):

R(θ, φ, t) = R(t) + ε(θ, φ, t) = R(t) + an(t)Yn(θ, φ), (4.6)

where Yn(θ, φ) is the spherical harmonic of order n and an(t) is the
amplitude of the surface mode. R(t) is solved from the Keller-Miksis
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equation [24]:
(

1 − Ṙ

c

)

RR̈ +
3

2
Ṙ2

(

1 − Ṙ

3c

)

=

(

1 +
Ṙ

c

)

1

ρ

(

pg(t) − Pa(t) − P0

)

+
Ṙṗg(t)

ρc
− 4νṘ

R
− 2σ

ρR
, (4.7)

where R, Ṙ, R̈ represent the radius, velocity, and acceleration of the
bubble wall, Pa(t) is the forcing pressure, P0 is the ambient pressure,
σ the surface tension, and ρ and ν the liquid density and kinematic
viscosity, respectively, and c the speed of sound in water. Eq. (4.7)
includes the important damping terms, such as radiation damping and
viscous damping. While thermal damping is often empirically modeled
by an increased viscous damping term [25, 26] in Eq. (4.7), we included
thermal damping through the more physical picture introduced by Tögel
and Lohse [27]. From their extended model we included the bubble
hydrodynamics, the gas pressure, and the heat exchange between the
gas core and the surrounding liquid. As the bubbles in our study are
only weakly driven, we do not include chemical reactions of the gaseous
species in the air bubble. In addition, we chose to model the gas interior
to be comprised of nitrogen gas only. The internal gas pressure is given
by [27]:

pg(t) =
NkT(t)

V(t) − NB
− 1

2
ρgRR̈, (4.8)

where N is the total number of molecules in the gas core, k is the
Boltzmann constant, B is the molecular covolume. T is the temperature
and V the volume of the bubble. ρg is the mean gas density.

Following [27] and [28], we now derive the equation for Ṫ(t) to close
the set of ODE’s. The global energy balance of the bubble’s interior can be
expressed as

Ė = Q̇ − pgV̇. (4.9)

Here Ė is the change of total energy, and Q̇ is the conductive heat loss,
given by

Q̇ = 4πR2λmix
T0 − T

lth
. (4.10)

Here, λmix is the heat conductivity, T0 is the liquid temperature at the
bubble wall and lth is the thickness of thermal boundary layer, estimated
by

lth = min

(√

Rχth

|Ṙ| ,
R

π

)

, (4.11)
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where χth is the thermal diffusivity. The total energy E is

E = ethN, (4.12)

where eth equals the thermal energy per molecule, which is

eth =
f

2
kT +

kΘ

exp(Θ/T)− 1
. (4.13)

Here, f is the number of translational and rotational degrees of freedom
(which is 5 for nitrogen), and Θ is the characteristic vibrational tempera-
ture (which is 3350 K for nitrogen).

Taking the time derivative of Eq. (4.12), inserting this together with
Eq. (4.10) into Eq. (4.9) leads to the differential equation for the tempera-
ture:

Ṫ =
4πR2λmix

T0−T
lth

−
[

NkT
V−NB − 1

2 ρgRR̈
]

[

5
2 k +

kΘ2exp
(

Θ
T

)

(

exp
(

Θ
T

)

−1
)2

T2

]

N

. (4.14)

Equations (4.7), (4.8) and (4.14) lead to a system of four first order
ordinary differential equations for R, Ṙ, R̈ and T. This set of ODE’s was
then solved numerically with a stiff differential solver of variable order
(Matlab ODE15s, The Mathworks).

Following the same spirit of the classical derivation of the Rayleigh–
Plesset equation a dynamical equation for the distortion amplitude an(t)
can be derived [10, 12, 18]:

än + Bn(t)ȧn − An(t)an = 0, (4.15)

with

An(t) = (n − 1)
R̈

R
− βnσ

ρR3
+

2νṘ

R3

(

−βn +
n(n − 1)(n + 2)

1 + 2δ/R

)

, (4.16)

Bn(t) =
3Ṙ

R
+

2ν

R2

(

−βn + 2
n(n + 2)2

1 + 2δ/R

)

, (4.17)

where βn = (n − 1)(n + 1)(n + 2). Equations (4.16) and (4.17) follow
from a simple boundary layer approximation, which assumes the vorticity
to be localized in a thin region around the bubble, see [11, 12]. The
size of the boundary layer thickness δ was taken as the minimum of the
diffusive length scale and the wavelength of the shape oscillation R/(2n).
The ordinary differential equation (4.15) was then solved together with
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Eq. (4.7) to give the distortion amplitude as a functionan(t) for each mode
n. A small distortion was imposed to the differential equation of the shape
oscillations as an initial condition. The initial distortion will decay if
the system is driven below threshold. Vice versa, the surface mode will
grow rapidly when driven above the threshold of the instability. In the
calculations presented here the initial distortion was taken to be 1 nm, in
the order of 10−4 of the ambient radius of the bubble. We note that the
choice of the size of the initial distortion is arbitrary as we only consider
a fully linear perturbation model for the shape instability. Therefore,
without any knowledge of the initial condition, the absolute amplitude
of the resulting shape deformation cannot be inferred from the model.

4.5 Results

The radial oscillations for a 30 µm radius bubble driven with a burst of
10 cycles of 130 kHz at a pressure of 80 kPa (see Fig. 4.4A) is given in
Fig. 4.4B. The results of dynamical equations for the distortion amplitude
is given in Fig. 4.4C. The graph displays the development over time of the
shape oscillations for mode n = 2 to 7. Fig. 4.4D shows the growth of the
shape oscillations in a log-linear scale. It is seen that the mode n = 3 grows
exponentially while other modes are hardly excited. The finite length
of the ultrasound pulse stops further growth. The surface modes then
decay exponentially with a decrease proportional to the power n each at
a surface mode natural frequency following Eq. (4.1). Two similar results
are shown for bubbles of radius 35 µm and 45 µm, respectively. Fig. 4.4G
shows the development of a single mode n = 4; also mode n = 3 is visible.
Fig. 4.4K shows how a dominant mode n = 5 develops, while a mode n =
6 shows an onset of a possible instability, but not nearly as strong as the
dominant mode.

Note the striking comparison between the simulations in Fig. 4.4H
and the experimental recordings in Fig. 4.2G. The experiments were done
on a bubble with a 33 µm radius, while the radius of the bubble in the
simulations was 35 µm. In both cases, the mode number 4 was dominant.
The growth and decay part of the curve is similar.

The above calculations are now repeated for a complete parameter
range as a function of the ambient bubble radius R0 and the forcing
pressure Pa. The bubble radius was varied from 10 to 60 µm in 0.25 µm
intervals; the pressure was varied from zero to 175 kPa in 1 kPa incremen-
tal steps. The results of these 35 000 calculations were then combined in
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Figure 4.4: Numerical simulation of the onset of the shape oscillation. (A) An
ultrasound pulse of 10 cycles of 130 kHz at a driving pressure of 80 kPa. (B) The
radial response of a 30 µm bubble. (C) Mode amplitude an for n = 2 tot 7 as function
of time t. The color coding indicates the mode: red - mode 2, green - mode 3, blue
- mode 4, turquoise - mode 5, magenta - mode 6, and yellow - mode 7. The mode
n = 3 is the most unstable one. (D) The same result plotted on a log-linear scale
showing the growth of a single dominant mode. The growth stops as soon as the
parametric driving stops, followed by an amplitude decrease and shape oscillation
frequency characterized by the corresponding mode number n. Since the absolute
amplitude of the resulting shape deformation cannot be inferred from the model,
all mode amplitudes were normalized by the maximum value of all an(t). E-H:
Similar calculations for a 35 µm bubble, where n = 4 is the most unstable mode.
I-L: Here R0=45 µm. Now mode 5 is the most unstable one.
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Figure 4.5: Numerical radius–pressure diagram. The threshold for surface mode
vibrations is set to 10% of R0. The color coding indicates a specific mode preference:
white - below threshold, red - mode 2, green - mode 3, blue - mode 4, turquoise -
mode 5, magenta - mode 6, and yellow - mode 7. Experimental data points are
included using the same color coding.
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a diagram of the complete parameter space (see Fig. 4.5) where the radius
R0 is plotted on the horizontal axis and the applied ultrasound pressure
Pa on the vertical axis. The numerical data points are classified in color
coding following their mode preference, i.e., the mode number with the
dominant distortion.

We also include in Fig. 4.5 the experimental data on surface mode vi-
brations following the same color coding. We see that the correspondence
is very good. In the fully linear model the choice for the threshold cannot
be other than quite arbitrary. Bubbles that did not show a surface mode
vibration in the experiments are indicated by a white dot. These data
points were used to specify a threshold value for surface mode vibrations
in the radius–pressure diagram, here at 10% of the ambient bubble radius.
This means that the amplitude of the shape instability needs to grow by
at least two orders of magnitude in order to be included in the radius–
pressure diagram. We observe that the forcing pressure threshold for
surface mode vibrations has its minimum value at an ambient radius
of 25.1 µm, which, as expected, very well coincides with the resonance
radius of the natural volumetric oscillation when driven at 130 kHz
frequency following the classical expression by Minnaert [29]:

fM =
1

2π

√

3γP0

ρR2
0

, (4.18)

where γ is the polytropic exponent. We neglect the surface tension in
this equation. We note that the pressure amplitude threshold for shape
oscillations is for bubbles with a radius near the volumetric resonance
radius less dependent on the choice of threshold value.

From the radius–pressure diagram it also follows that the mode prefer-
ence for a given ambient bubble radius is hardly influenced by the forcing
pressure. Furthermore, we observed that from the numerical simulations
the instability can grow beyond the resting radius of the bubble. In the
physical case such a bubble would split up, as observed in experiment. It
is interesting to see that the number of initial fragments is directly related
to the mode number. Fig. 4.6, for example, shows a bubble that exhibits
a mode n = 3 surface mode vibration and splits up into three fragments.
The fragmentation continues, theoretically following a cubic dependence
of the mode number n [30], here into 27 fragments. In our setup the total
number of bubble fragments cannot be tracked quantitatively as there is
a fair amount of optical shielding.



68 4. MICROBUBBLE SHAPE OSCILLATIONS

Figure 4.6: Splitting of a shape-unstable bubble in mode n = 3. Three fragments
are split off.

4.6 Conclusions

In conclusion, we have seen that a bubble can become shape-unstable
through a parametric instability. The experimental recordings of shape
oscillating micrometer sized bubbles, ranging from 10 to 60 µm in radius,
were supported by a model which introduced a small non-spherical linear
perturbation into a Rayleigh–Plesset type equation. The observed mode
number n (from 2 to 6) was found to be linearly dependent on the bubble
radius R0, and independent of the acoustic forcing pressure Pa. A driving
pressure threshold for the occurence of the shape instability was found,
which was minimum for the resonance radius of 25.1 µm, corresponding
with the acoustic frequency of 130 kHz.
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5
Nonspherical oscillations of

ultrasound contrast agent

microbubbles§

The occurrence of nonspherical oscillations (or surface modes) of coated

microbubbles, used as ultrasound contrast agents in medical imaging,

is investigated using ultra-high-speed optical imaging. Nonspherical os-

cillations appear as a parametric instability, and display subharmonic

behavior: they oscillate at half the forcing frequency, which was fixed

at 1.7 MHz in this study. With the definition of a single, dimensionless

deformation parameter, the amplitude of nonspherical deformation is

quantified as a function of the bubble radius (between 1.5 and 5 µm)

and of the acoustic pressure (up to 400 kPa). Surface modes are shown

to preferentially develop for a bubble radius close to the resonance of

radial oscillations. Using optical tweezers designed to fully trap and

micromanipulate single bubbles in 3D, the magnitude of nonspherical

deformation is compared for free-floating bubbles and for bubbles in

contact with a wall. In the studied range of acoustic pressures, the growth of

surface modes saturates at a level far below bubble breakage. The medical

relevance of these nonspherical oscillations, in relation with potential

subharmonic acoustic emission, is discussed.

5.1 Introduction

Ultrasound Contrast Agents (UCA) are solutions of encapsulated bubbles
of a few micron in radius. They are used in ultrasound imaging to enhance

§Based on: Benjamin Dollet, Sander van der Meer, Nico de Jong, Michel Versluis, Detlef
Lohse, "Nonspherical oscillations of ultrasound contrast agent microbubbles", submitted
to Ultrasound Med. Biol.
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the contrast between the blood pool and the surrounding tissue, thanks to
the very high echogenicity of the microbubbles [1]. Tissue reflects sound
mainly at the fundamental frequency, therefore in practice ultrasound
imaging modalities aim at using nonlinear backscattering properties of
the microbubbles to enhance the contrast between blood and tissue [2, 3].
One of the simplest modalities consists in receiving higher harmonic
(2 f , 3 f , . . . where f is the insonifying frequency), subharmonic ( f /2), or
ultraharmonic (3 f /2) echoes from the bubbles. Among these nonlinear
components, the subharmonic response offers several advantages. First,
it displays a better blood-tissue contrast than the second harmonic [4–6].
Second, for high transmit frequency (typically 20 to 40 MHz), it gives
a stronger signal than higher harmonics and ultraharmonics [7], and is
less sensitive to attenuation and nonlinear propagation, which makes
subharmonic imaging a promising modality for intravascular imaging [8].
However, the physical origin of the subharmonic component, and its
dependence on the applied pressure and frequency remains unclear [5].

To understand the origin of the sound scattered by UCA microbubbles,
all existing models have focused on describing the spherical oscillations
of coated bubbles (see e.g. [9–14]). However, it is well known for uncoated
bubbles of bigger size that spherical oscillations become unstable above
a threshold in acoustic forcing. The onset of nonspherical deformation
has been predicted by various theoretical studies [15–22] and directly
observed for bubbles for radii between 10 µm and 1 cm [23–25]. As a
salient feature, these nonspherical oscillations, or surface modes, display
a strong subharmonic behavior with respect to the forcing frequency,
which can be understood in terms of a parametric resonance.

Based on direct observations using high-speed imaging, there has
been some evidence that UCA microbubbles can exhibit nonspherical
shapes [26–28], and that they can display subharmonic behavior [26].
However, no systematic study of the nonspherical oscillations has yet
been proposed. A major difficulty of such a study is that the bubbles
stand against the top wall of the setup because of buoyancy, and the
vicinity of a wall influences greatly the nonspherical oscillations of the
bubbles [27, 28]. To overcome this difficulty, 3D micromanipulation using
optical tweezers has recently been proposed. This technique has proven
to be a very versatile tool to trap single or multiple UCA microbubbles
and control precisely their position, revealing the great influence of the
wall on their radial oscillations [29]. In this paper, we combine this 3D
optical micromanipulation with ultra-high-speed imaging, to study the
occurrence of nonspherical oscillations of UCA microbubbles.
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5.2 Materials and methods

5.2.1 Experimental setup

The experimental setup (see Fig. 5.1) is similar as the one described
in [29]. A solution of the experimental contrast agent BR-14 (Bracco
Research S.A., Geneva, Switzerland), containing bubbles coated by a
phospholipid monolayer, is prepared and injected through an optically
and acoustically transparent chamber (OptiCell, BioCrystal, Inc.) im-
mersed in water. The bubbles are illuminated from below with an optical
fiber and an image is produced by an upright Olympus microscope with a
100× water-immersed objective (LUMFPL, Olympus; NA = 1.0) and a 2×
magnifier. Bright-field transmission imaging is performed through the
same objective. A Gaussian beam from a 1064 nm continuous wave Yb
fiber laser (YLM, IPG Photonics) is converted into a Laguerre-Gaussian
mode by a phase diffractive optical element (DOE) [30] implemented on
a spatial light modulator (SLM) (X8267-11, Hamamatsu). This conversion
enables us to trap particles of lower refractive index than the surrounding
medium, like microbubbles in water [30, 31]. The beam is coupled into
the microscope and focused on the OptiCell by the 100× objective. The
trapped bubble can be positioned at a prescribed distance from the wall
using a micropositioning stage. The ultra-high-speed Brandaris camera
[32] is directly connected to the imaging port of the microscope and
records the bubble oscillations during ultrasonic insonation at 14 million
frames per second.

The optical focus matches with the acoustical focus of a broadband
single element transducer (PA081, Precision Acoustics, Dorchester, UK)
with a center frequency of 1.7 MHz and a calibrated range of frequencies
from 0.7 to 6 MHz. The transducer is mounted at an angle of 45◦ with
respect to the optical axis. An arbitrary waveform generator (AWG), a
Tabor 8026 (Tabor Electronics, Tel Hanan, Israel), connected to a PC, was
used to produce waveforms, which were then amplified by an ENI 350L
amplifier. The programming of the waveforms was performed in Matlab
(The Mathworks). The waveforms were transferred to the AWG via a GPIB
interface. The length of the ultrasound waveforms was 12 cycles at a fixed
frequency f = 1.7 MHz, of which the first two and the last two were
tapered with a Gaussian envelope.
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5.2.2 Insonation protocol

We scan regions of the OptiCell not previously subjected to ultrasound
with two horizontal micropositioning stages, to find single isolated bub-
bles. Due to buoyancy, the bubbles float against the top wall of the cell.
Some bubbles adhere to the wall; we study only nonadherent bubbles,
by checking that they are repelled by the outer circumference of the
Laguerre-Gaussian laser beam. The bubble insonation protocol is as
follows. First, without optical trap, the bubble is subjected to a scan of
six different acoustic pressures, from 0 to 5P0 by regular steps of P0, the
first sequence being a reference without insonation to measure the equi-
librium bubble radius. We used different step values P0, from 40 to 80 kPa;
the highest investigated pressure is thus 400 kPa. This corresponds to a
maximal Mechanical Index M.I. = 0.31. During each pulse, the bubble
oscillation is recorded with the ultra-high-speed Brandaris camera, which
in these experiments records six movies of 128 frames each, with one
movie per pressure level. Second, we trap the bubble, and position it
at a distance of 50 ± 5 µm from the wall, which is sufficient for the wall
influence on the bubble dynamics to be negligible: these bubbles are

Figure 5.1: Overview of the experimental setup. The x, y, z arrows figure the 3D
micropositioning stage.
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freely floating. We then insonify the bubble as before, the optical trap
being momentarily switched off during insonation to avoid any possible
influence on the bubble oscillations. Third, we bring back the bubble in
contact with the top wall of the cell, check again if it is non-adherent, and
insonify it as before.

We discard the bubbles that break during insonation: the breakage of
a bubble is followed by its progressive dissolution, which is easy to detect
from its decreased radius. In total, we studied 40 bubbles. We do not
present measurements for bubbles smaller than 1.9 µm: at the frequency
of 1.7 MHz, we hardly observed oscillations for these bubbles, likely owing
to the “thresholding” behavior previously reported for the same bubbles
below resonance [33].

5.3 Results

Typical examples of the nonspherical shapes of the bubbles during in-
sonation are displayed in Fig. 5.3. In two cases (Fig. 5.3A and B), the bub-
ble shape shows a clear surface mode, characterized by regular “bumps”,
which number is called the mode number (mode 3 in Fig. 5.3A, mode
4 in Fig. 5.3B). On the other hand, Fig. 5.3C and D show more irregular
shapes, combinations of different surface modes. We will now present
a systematic study of these nonspherical shapes, first focusing on indi-
vidual surface modes (Sec. 5.3.2 and 5.3.3) then on a global nonspherical
deformation quantified by a single deformation parameter (Sec. 5.3.4).

5.3.1 Image analysis

The image analysis, entirely programmed with Matlab, is performed as
illustrated in Fig. 5.3. First, we apply a threshold to the images (Fig. 5.3A)
to identify the bubble contour. The threshold level was chosen as the
average of the grey levels of the background and of the darkest grey level
of the bubble; this choice reproduces the bubble contour with a precision
on the radius better than 5% (Fig. 5.3B). We then identify the bubble
center as the center of mass of the surface enclosed by the contour, and
from this point we measure the angular dependence of the radius R(θ),
and calculate its difference δ(θ) = R(θ) − Rmean with the mean radius
Rmean = 1

2π

∫ 2π
0 R(θ)dθ (Fig. 5.3C). The bubble shows a nonspherical

shape if the value of δ(θ) deviates significantly from zero.
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Figure 5.2: Snapshots of surface modes experienced by UCA microbubbles. A and
B show clearly identifiable modes (3 and 4), whereas C and D display examples
where nonspherical deformation is the result of a mixing of different modes.

A classical way to study nonspherical deformation is the decompo-
sition into surface modes [34]. In the most common case where the
bubble shape has an axis of symmetry, each surface mode is indexed by a
single integer which quantifies the number of “bumps” along the bubble
contour (Figs. 5.3A and B). To identify the amplitude and the number of
the modes, we calculate the Fourier transform of δ(θ):

δ̂(n) =
1

2π

∫ 2π

0
δ(θ)einθdθ,

using a Fast Fourier Transform (FFT) algorithm, and we then identify the
value of the Fourier spectrum at each integer value of n as the absolute

value of the amplitude of mode n: |an| =
√

δ̂(n)δ̂(n)∗, where ∗ stands
for complex conjugation (Fig. 5.3D). Note that this 2D definition of the
surface mode amplitude differs from the usual 3D definition, where
the bubble surface is decomposed in Legendre polynomials: R(θ, t) =
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Figure 5.3: Procedure used for the data analysis. A: image of a bubble of radius 3.6
µm recorded with the camera. B: extracted profile of the bubble after thresholding
image A. C: angular variation δ(θ) = R(θ) − Rmean, difference between the
distance from the bubble center to the interface and the mean bubble radius. D:
Fourier spectrum (see text for details) of δ(θ), used to determine the amplitude of
the various modes.

R0(t) + ∑
+∞
n=1 a3D

n (t)Pn(cos θ) (with the common assumption of axisymme-
try around the axis θ = 0[π]). We have chosen the 2D definition because
we observed no preferential orientation for the deformation.

To compare the results on different bubbles, which will be done in
Sec. 5.3.3 and 5.3.4, we subtracted for each mode the background noise
level determined from the first images, when no oscillations have started
yet, and we then performed time integration during the insonation pulse.
Finally, although most of this paper focuses on nonspherical deforma-
tions, we will need to compare the magnitude of spherical and nonspher-
ical oscillations in Sec. 5.4.1. For this, we define a relative radial amplitude
as the standard deviation of Rmean during the ultrasonic pulse.

5.3.2 Subharmonic and saturation behaviors

A typical example of the driving pulse, the radial response of a bubble,
and its single mode response, is shown in Fig. 5.4. This figure shows a
major difference between radial and nonspherical oscillations: whereas
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T=1/f

T=2/f

Figure 5.4: Example of experimental recording (bubble of initial radius 3.6 µm).
Top: applied acoustic pressure (here, a 12-cycle burst of amplitude 100 kPa and
frequency 1.7 MHz, tapered with a 2-cycle Gaussian envelope at the beginning and
end). Middle: radius-time curve reconstructed from the movie of 128 images at
frame rate 15 MHz. Bottom: evolution of mode 4, obtained as explained in Fig. 5.3.
To show clearly the subharmonic behavior, we have unwrapped the |a4|(t) curve.

the radial oscillations are forced at the driving frequency (even though it
displays the nonlinear “compression–only” behavior [35]), the nonspher-
ical oscillations are at half the driving frequency. It was found that this
is the case for all observed surface modes, irrespective of mode number,
bubble radius, or applied pressure amplitude.

We also observe in Fig. 5.4 that the surface modes appear only after a
few periods of radial oscillations and keep growing until the pulse ends.
On the other hand, Fig. 5.5 shows another example of an experimental
recording with a clear saturation, contrary to Fig. 5.4. It is interesting to
know whether the surface modes keep growing along insonation, which
could lead to controlled splitting of the bubbles, or whether they saturate.
We address this question on the 17 recordings which show the highest
surface mode amplitude, because they are the most likely to split. Among
these 17 recordings, 13 showed mode saturation, and at a level insufficient
for the bubbles to split (we always observed an < 0.5 µm and an/R0 <

25%, where R0 is the equilibrium radius). The studied range of acoustic
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Figure 5.5: Illustration of the saturation of a surface mode. Top: applied acoustic
pressure; middle: radius-time curve; bottom: evolution of mode 2, which saturates
after about 4 cycles (here, the curve is not unwrapped, contrary to Fig. 5.4).

pressure (≤ 400 kPa) seems therefore too low for bubble splitting to occur,
whereas it has been observed at higher pressures [36]. However, we did
observe breakage of bubbles through a different mechanism [37]: a loss
of gas during insonation, followed by a slow deflation (on a timescale of
a few tens of seconds) during which the bubble acquires a very distorted
shape. We associate this behavior to the creation of defects (points or line)
within the shell during insonation, through which gas escapes.

To conclude this Subsection, it is worth remarking that all existing
theoretical studies describe the surface mode dynamics of uncoated
bubbles [15–22] as a linear ODE for an. This is incompatible with a
saturation behavior, which is intrinsically the signature of a nonlinear
behavior of the shell. Modeling mode saturation is therefore an open
challenge, which may help to understand more precisely the influence of
the shell on the dynamics of UCA microbubbles.



80 5. NONSPHERICAL OSCILLATIONS OF UCA MICROBUBBLES

5.3.3 Dependence on mode number, bubble radius and acoustic
pressure

After the description of the salient features of surface modes for single
bubbles, we now turn to a global study of the surface modes. In this
Subsection, we study the relative amplitude of single modes: |a2|/R0,
|a3|/R0 and |a3|/R0 in the diagram bubble radius versus applied acoustic
pressure.

There are significant fluctuations between different bubbles, even if
they are of nearly equal size and insonified with the same amplitude.
Since we carefully define a reproducible protocol to insonify each bubble
(see Sec. 5.2.2), we can attribute these fluctuations to small but intrinsic
changes in shell composition or structure. In order to obtain less noisy
trends, and since we have a big number of data points, we meshed the
diagram by a regular grid of 7× 7 rectangles, and ascribe to each rectangle
the value |an|/R0 obtained after averaging over the different data points
present to the considered rectangle. We present the obtained results for
the free-floating bubbles in Fig. 5.6 for the modes 2, 3 and 4.

These plots show a big similarity between the different modes: at a
given bubble radius, the amplitude tends to increase with the applied
acoustic amplitude, as expected. Moreover, all modes exhibit a maximum
amplitude for a radius close to 2.5 µm and for pressures higher than
300 kPa, and a secondary maximum in amplitude for a radius close to
3.7 µm and a pressure close to 250 kPa, and have a comparable amplitude.
This shows that for UCA microbubbles, contrary to uncoated bubbles
[25], the different surface modes do not develop separately. To account
for this, we now analyse the nonspherical oscillations through a single
deformation parameter: such an analysis is simpler, and sufficient to
localize the regions of maximal deformation in a diagram bubble radius
versus acoustic pressure.

5.3.4 Deformation parameter

We define the deformation parameter α as the standard deviation of δ(θ),
rescaled by Rmean (see Sec. 5.3.1):

α =
1

Rmean

[

1

2π

∫ 2π

0
δ(θ)2dθ

]1/2

. (5.1)

This parameter is dimensionless, equal to zero for a spherical bubble, and
increases for increasing nonspherical deformation.



5.3 RESULTS 81

2.5 3 3.5 4 4.5
0

50

100

150

200

250

300

350

400

radius (µm)

pr
es

su
re

 (
kP

a)

0

0.005

0.01

0.015

0.02

0.025

2.5 3 3.5 4 4.5
0

50

100

150

200

250

300

350

400

radius (µm)

pr
es

su
re

 (
kP

a)

0

0.005

0.01

0.015

0.02

2.5 3 3.5 4 4.5
0

50

100

150

200

250

300

350

400

radius (µm)

pr
es

su
re

 (
kP

a)

0

2

4

6

8

x 10
−3

Figure 5.6: From top to bottom, amplitude of modes 2, 3 and 4, as functions of the
bubble radius (horizontal scale), and of the acoustic pressure (vertical scale), for
free-floating bubbles. The color code quantifies |an|/R0: the bigger this quantity,
the darker the color. The precise correspondence between grey levels and |an|/R0

appears on the color bar at the right of each plot, and the absolute scale is the same
for the three plots: notice that the amplitude of mode 4 is lower than modes 2 and
3.
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Like the surface modes (Sec. 5.3.1), we perform time integration of the
deformation parameter during the ultrasonic pulse to compare different
bubbles, and we plot the deformation parameter as a function of the
bubble radius and of the acoustic pressure, in Fig. 5.7. We recover the
trends already observed on single modes (Fig. 5.6), with less noise: the
deformation increases with increasing acoustic pressure, and the region
of maximum deformation is centered around a radius of 2.5 to 3 µm,
with a small secondary maximum at a radius of 3.7 µm. The maximum
observed deformation remains lower than 3%; though this value slightly
underestimates the real deformation because we subtracted the noise
level, it shows again that the UCA microbubbles reach far too small
deformation to undergo splitting.

5.4 Discussion

5.4.1 Nonspherical oscillations: a parametric instability

We showed in Sec. 5.3.2 that surface modes display a robust subharmonic
behavior, and require a finite time to fully develop. These are generic
features of a parametric instability: surface modes are not excited directly
by the applied ultrasound, but are rather driven by the radial oscillations,
whether the bubble is coated or not.

Francescutto and Nabergoj [18] have first analyzed theoretically the
surface modes of bubbles as a parametric instability, expressing the
amplitude threshold of the radial oscillations required for the instability
to develop. They considered uncoated bubbles, for which the eigenfre-
quency of a given mode n is known [38]:

ω2
n =

(n − 1)(n + 1)(n + 2)σ

ρR3
0

, (5.2)

with σ = 72 mN/m the surface tension, ρ = 103 kg/m3 the volumetric
mass of the liquid and R0 the equilibrium radius. As a generic feature
of parametric instabilities [39], the most unstable case, or parametric
resonance, arises for :

ω = 2ωn, (5.3)

where ω = 2π f with f the frequency of the excitation, i.e. of the radial
oscillations. In our range of applied pressures (Pa ≤ 400 kPa), we observed
that radial oscillations are still mainly at the applied acoustic frequency
(see Figs. 5.4 and 5.5), which we thus identify as excitation frequency. The
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Figure 5.7: (A) Deformation parameter, as a function of the bubble radius
(horizontal scale) and of the acoustic pressure (vertical scale), for free-floating
bubbles. The color code quantifies the deformation parameter: the bigger this
quantity, the darker the color. The precise correspondence between grey levels and
the deformation parameter appears on the color bar at the right of the plot. (B)
Relative radial amplitude as a function of the bubble radius (horizontal scale) and
of the acoustic pressure (vertical scale), for free-floating bubbles.
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condition (5.3) for parametric resonance also explains why surface modes
display a strong subharmonic behavior. However, for our applied driving
frequency, with the expression (5.2) of the eigenfrequency, the parametric
resonance lies at a radius of 11 µm for the mode n = 2 and at even higher
radii for modes n ≥ 3, far out of our experimental range (R0 < 5 µm).

This suggests that the expression (5.2) does not hold for the coated
UCA microbubbles, for which the shell elasticity is expected to strongly
affect the mode eigenfrequency, as was already shown for the eigen-
frequency of radial resonance [40]. Moreover, surface modes involve
not only dilatation, but also shear and bending of the membrane, and
the eigenfrequency of the surface modes of coated bubbles should be
a combination of the elastic parameters associated to these membrane
deformations. On the other hand, we showed in Sec. 5.3.3 that the domain
of instability does not vary significantly with the mode number. In other
words, for UCA microbubbles, nonspherical deformations arise mainly
as a mixing of modes (Fig. 5.3C and D), which is a marked difference
with surface modes for uncoated bubbles [25]. In the latter case, there
is a clear hierarchy of the different mode numbers in the same diagram,
following closely the theoretical description of a parametric instability.
These major differences between uncoated and coated bubbles call for a
better theoretical description of the influence of the shell on nonspherical
oscillations [41].

Up to now, we have shown that surface modes are a parametric
instability, but that the domain of instability does not depend significantly
on the mode number nor the bubble radius. Since a parametric instability
is more likely for increasing excitation amplitude, we can expect the am-
plitude of nonspherical oscillations to be correlated with the amplitude
of radial oscillations. To check this, we compare the average deformation
parameter α, defined in Sec. 5.3.4, to the relative radial amplitude, defined
in Sec. 5.3.1, and we present the diagram of this quantity calculated
for the free-floating bubbles in Fig. 5.7B. It shows indeed an excellent
correlation with the diagram of the deformation parameter (Fig. 5.7A),
which fully supports our above argument: We therefore conclude that
nonspherical oscillations develop preferentially when the bubble is at its
radial resonance. Note that in a previous study [40], we measured for the
frequency of 1.7 MHz a resonance radius of 3.1 µm in the regime of linear
radial oscillations, at very low pressures (below 40 kPa). However, the
resonance radius on Fig. 5.7B (hence for pressures higher than 300 kPa)
is lower by about 20%; this difference is due to the fact that increasing
the applied pressure amplitude decreases the resonance frequency, as is
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already known for uncoated bubbles [42].

5.4.2 Influence of a wall

Up to now, we have studied the nonspherical oscillations of free-floating
bubbles. We now plot the deformation of bubbles touching the top wall
(Figs. 5.8A). As a first difference between Fig. 5.7A and 5.8A, the bubbles
in contact with the wall which are most deformed are significantly smaller
than free-floating ones: the maximal deformation is observed at around
2 µm. Moreover, this shift is not specific to nonspherical oscillations, but
it is also observed on the spherical oscillations (compare Figs. 5.7B and
5.8B). This supports once more our view of surface modes as a parametric
instability driven near the radial resonance (Sec. 5.4.1), because it is well
known that the presence of a wall decreases the resonance frequency at
a given radius [43] or, equivalently, decreases the resonance radius at a
given frequency.

Furthermore, comparison of Figs. 5.7A and 5.8A shows that bubbles
touching a wall deform much less in the imaging plane than free-floating
bubbles. However, the imaging plane is parallel to the wall, hence we
could not record deformations occurring in a plane perpendicular to the
wall. Previous studies have shown that the presence of a wall induces
strong asymmetry in bubble dynamics [27, 28], with much stronger defor-
mations in the plane perpendicular to the wall. This asymmetry is well-
known in the context of cavitation, where the collapse of bubbles in the
vicinity of a wall can lead to the formation of a jet towards the wall [44–46].
Hence, our measurements underestimate the amplitude of deformation
for bubbles in contact with the wall. There is no such underestimation
for our trapped bubbles, which are brought far enough from the wall for
its influence to be negligible. The only possible preferential direction
for deformation could be the direction of ultrasonic propagation; since
this direction makes an angle of 45◦ with respect to the imaging plane,
we could track an asymmetry along the direction of propagation on our
images. However, we did not observe any evidence of such an asymmetry
for free-floating bubbles; hence, our method of visualization captures the
relevant deformation, contrary to bubbles close to walls.

5.4.3 Acoustic emission of surface modes

We have shown that the surface modes exhibit a robust subharmonic
character. They seem therefore natural candidates to explain the sub-
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Figure 5.8: (A) Deformation parameter, as a function of the bubble radius
(horizontal scale) and of the acoustic pressure (vertical scale), for bubbles touching
a wall. The color code quantifies the deformation parameter: the bigger this
quantity, the darker the color. The precise correspondence between grey levels and
the deformation parameter appears on the color bar at the right of the plot. The
absolute scale of the grey levels is the same as the diagram for free-floating bubbles
(Fig. 5.7); this shows that the bubbles get less deformed when they are close to the
wall. (B) Relative radial amplitude as a function of the bubble radius (horizontal
scale) and of the acoustic pressure (vertical scale), for bubbles touching a wall.
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harmonic sound emission from UCA microbubbles, and inducing surface
modes on a controlled way could appear as a promising way to enhance
subharmonic emission from UCA, which is of obvious interest for nonlin-
ear imaging.

Longuet-Higgins predicted first the sound emission associated to
nonspherical oscillations [47]. He showed that the relation between
sound emission and surface modes is more subtle than for radial oscilla-
tions. Indeed, there is no bubble volume variation associated with surface
modes, and since the pressure scattered in the far-field at a distance r by
a bubble of volume V is related to its volume variation [34],

Ps(r, t) =
ρ

4πr

d2V

dt2
+ O

(

1

r2

)

,

there is, at first order, no sound emitted by surface modes in the far-
field. However, Longuet-Higgins showed that surface modes induce a
secondary volume variation, proportional to the square of the mode
amplitude, and that this is related to a secondary sound emission in the
far-field:

Ps,n(r, t) ∝
an(t)2

r
.

This shows that the sound emission associated to surface modes is mainly
at twice the main subharmonic frequency of an: hence, we expect that
the main frequency contribution of this sound to be the fundamental,
which would limit the interest of surface modes as a nonlinear source of
sound. However, Longuet-Higgins considered the case of unforced sur-
face modes, decoupled from radial motion and acoustic forcing, whereas
in our case, surface modes are the result of a parametric forcing, and
one needs to account for the coupling between acoustic forcing, radial
oscillations, and surface modes to predict correctly the sound associated
to surface modes (and especially its frequency content). This theoretical
derivation, and its comparison to experimental sound measurements,
will be described in a future study.

5.5 Conclusions

We have performed the first systematic study of nonspherical oscillations,
or surface modes, of ultrasound contrast agent microbubbles, using ultra-
high speed imaging. We have shown that they are significantly present in
medically relevant ranges of bubble radii and applied acoustic pressures.
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It was shown that nonspherical deformations are a parametric instability
driven by radial oscillations: they oscillate subharmonically with respect
to the applied driving frequency, they require a finite time to grow,
and they develop preferentially at the resonance radius for the radial
oscillations.

This study has strong implications in two directions of research. First,
it motivates a deeper theoretical modeling of bubble coatings, accounting
for membrane shear and bending, which in turn could be used to better
understand and design UCA microbubbles. Second, the subharmonic
character of nonspherical oscillations are interesting in the context of
nonlinear imaging, but the outcome in terms of sound emission remains
unclear at this stage: this requires further specific research.
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6
Bubble resonance using chirps§

The eigenfrequency of a contrast bubble can be determined optically with

a high speed camera by insonifying a bubble with several bursts of a fixed

frequency consecutively, and analyzing its response (see Ch. 3). However,

analysis of a single bubble requires much recording memory capacity.

Using a chirp as driving pressure decreases the amount of the recording

memory needed significantly, while delivering the same information about

the eigenfrequency. The method analyzes the power spectra and the

phase difference of the driving pressure and the radial response to extract

the eigenfrequency (the method extracts the frequency with the largest

oscillation amplitude; for very nonlinear oscillations, we term this the

peak frequency). Even though the methods are based on fitting with linear

models, for very nonlinear radial oscillations, the peak frequency could

be determined with high accuracy. The data extracted with the chirp

resonance method complements the data recorded with the microbubble

spectroscopy method. A decrease in peak frequency of a bubble with

increasing radial oscillation amplitude was observed with the methods.

Simulations using the Rayleigh–Plesset equation confirmed that the chirp

resonance methods are able to determine the peak frequency. They are also

in accordance with an analytical study. Finally, the difference between the

bubble response on up sweep chirps and down sweep chirps was studied.

6.1 Introduction

Diagnostic ultrasound imaging is based on transmitting and receiving
ultrasound waves. The waves are generated by a transducer consisting

§Based on: Sander van der Meer, Nico de Jong, Michel Versluis, "Bubble resonance
using chirps", in preparation; Section 6.5 is based on: Ayache Bouakaz, Sander van der
Meer, Michel Versluis, Anthony Novell, Nico de Jong, "Chirp reversal for contrast imaging:
high speed optical verification", in preparation.
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of piezo-electric crystals which convert electric signals into ultrasonic
pulses [1]. The transmitted waves propagate through a medium until they
hit reflecting or scattering objects, and the reflected waves are received by
the same transducer.

The scattering of blood is low compared to the scattering of sur-
rounding tissue. The scattering can be enhanced by introducing an
ultrasound contrast agent into the blood. An ultrasound contrast agent
is a liquid containing many microbubbles, which very effectively scatter
the ultrasound [2–4]. In this way, it is possible to visualize and quantify
the perfusion of tissue, like for instance the heart muscle, liver or kidney.
Contrast agents are nowadays used in various medical investigations, e.g.
in obtaining diagnostic information from the volume and shape of the
heart ventricles, or to quantify the perfusion of various organs, like liver
or kidney.

The development of ultrasound contrast agents lagged behind that of
some of the other imaging modalities, even though ultrasound is used
worldwide and is a technology that would benefit from an increased
signal-to-noise ratio. Part of the lag in contrast agent development was
due to the pharmaceutical challenge of creating a safe material that
effectively scattered ultrasound. The challenge was further increased
by the difficulty of reproducibly predicting and characterizing the prop-
erties of these materials with results that correlated with clinical data.
Characterizing the properties of individual contrast bubbles is therefore
of importance, and an important property of the microbubbles is their
resonance frequency.

Previously, the analysis of the resonance frequency of contrast bubbles
was based on the analysis of the radial response of the microbubbles
on different bursts of a fixed frequency. With approximately 10 dif-
ferent interrogation waves of 8 cycles, the resonance frequency of the
microbubbles was studied [5]. The technique was termed microbubble
spectroscopy.

Since this method is very recording memory intensive, a new method
was developed. Here, we replace the 10 interrogation waves of fixed
frequency into one wave with a chirp, which is a frequency sweep. Chirps
are also used in pulse sequences for imaging [6, 7]. The bubble response
on a chirp is compared with the bubble response on microbubble spec-
troscopy. The method is faster in deriving the resonance frequency from a
contrast agent microbubble, and less recording memory is needed. With
chirps, the effect of the amplitude of the driving pressure is examined.

First, simulations are presented to illustrate the strength and the
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stability of the chirp resonance method. Experiments with both the
microbubble spectroscopy method and with the chirp resonance method
are presented, and a dependence of the peak frequency on the amplitude
of the driving pressure was found.

6.2 Resonance using chirps: Simulations

To gain insight in the oscillating behavior of bubbles as a response
on chirp signals, simulations were performed. We use the following
description of a linear chirp for the forcing term.

6.2.1 Theoretical description of a chirp

A chirp is a signal in which the frequency increases (up sweep chirp) or
decreases (down sweep chirp) in time. In a linear chirp, the instantaneous
frequency f (t) varies linearly with time:

f (t) = fcenter + kt. (6.1)

Here, fcenter is the center frequency of the chirp (at t = 0) and k is the
rate of frequency increase (or chirp rate). The value of k is positive for up
sweep chirps and negative for down sweep chirps.

The chirp itself is given by the following equation:

x(t) = cos(2π
∫ t

0
f (t̃)dt̃) = cos(2π( fcenter +

k

2
t)t). (6.2)

The chirp was modulated with a cosine tapering window or Tukey
window, to minimize side lobes in the frequency spectrum. In this
window, a fraction (α/2) of the total pulse duration (T) is tapered at each
end with a cosine lobe of width (1− α)T/2. This window attempts to bring
the data to zero smoothly at both ends without significantly affecting the
bulk of the data points. The window function in the time domain w(t) is
defined as:

w(t) =

{

1 for 0 ≤ |t| ≤ α T
2

1
2

[

1 + cos
(

π |t|−αT/2
(1−α)T/2

)]

for α T
2 ≤ |t| ≤ T

2

(6.3)

The window evolves from a rectangle to a Hanning window as α varies
from 0 to 1. We use an α of 0.5.

The bandwidth of the used chirps was 90%, allowing us to scan a large
range of frequencies in a single wave.
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6.2.2 Simulations with a harmonic oscillator

If a bubble is insonified with a small acoustic pressure, it is well known [8,
9] that a bubble behaves as a linear oscillator; its relative radial excursion
x, defined as R = R0(1 + x), obeys the equation:

ẍ + ω0δẋ + ω2
0x = F(t), (6.4)

with f0 = ω0/2π the eigenfrequency of the system and δ its (linear) di-
mensionless damping coefficient (equivalently, one can define the quality
factor Q = 1/δ), and F is the driving force term.

The radial dynamics of the bubble depend on the driving frequency
f = ω/2π. Writing F(t) = F0 sin ωt and x(t) = x0 sin(ωt + ϕ), one gets
from Eq. (6.4):

x0(ω) =
F0

√

(ω2
0 − ω2)2 + (δωω0)2

. (6.5)

This equation defines the resonance curve, displaying a maximum at the
resonance frequency:

fres = f0

√

1 − δ2

2
, (6.6)

which is lower than the eigenfrequency f0 in the presence of damping.
Strictly speaking, Eq. (6.6) holds only if the damping coefficient δ is
independent of ω.

The response of a harmonic oscillator on a driving amplitude was
numerically solved. The goal of the simulation was to verify the possibility
to derive the properties of the harmonic oscillator such as the eigenfre-
quency from the response; by successfully doing so the chirp resonance
method is proven a valid method.

The values for the eigenfrequency f0 and the damping δ of the har-
monic oscillator were fixed. Then, the response on a driving chirp
signal was numerically solved using the ode45 solver in Matlab (The
Mathworks).

6.2.3 Deriving the eigenfrequency

In Fig. 6.1 the result of a simulation is shown. There are two methods to
derive the eigenfrequency and the damping from the numerical data. The
first method focusses on the power spectra of the oscillations. We calcu-
late power spectra both from the driving (P( f ), see Fig. 6.1B) and from the
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Figure 6.1: Demonstration of the chirp resonance methods, with the harmonic
oscillator. The eigenfrequency was set to 2 MHz, and the damping was set to 0.25.
In (A) the driving amplitude is shown. In (C) is the response amplitude of the
harmonic oscillator is shown. The corresponding powerspectra P( f ) and R( f )
are displayed in (B) and (D). The phase difference between the driving amplitude
and the response amplitude (solid line) and the best fit to it (dotted line) are
shown in (E). The powerspectrum that shows the pure response of the harmonic
oscillator Rresult( f ) (solid line) and the best fit (dotted line) are shown in (F);
this is obtained by normalizing (D) with (B). The fitting parameters of the power
spectrum method: f0=2.00 MHz, δ=0.25, and for the phase fitting: f0=2.00 MHz,
δ=0.25.

oscillator response (R( f ), see Fig. 6.1D). The response power spectrum is
then normalized by the input frequencies (Rresult( f ) = R( f )/P( f ), see
Fig. 6.1F). The resulting power spectrum then contains only the response
of the harmonic oscillator system. The eigenfrequency and damping can
be determined, by fitting the resulting power spectrum to the equation of
a harmonic oscillator.
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A second method of deriving the eigenfrequency and the damping,
is by examining the phase difference between driving amplitude and
response amplitude. According to theory, the phase lag ϕ is:

tan ϕ =
δtot

f0

f − f
f0

. (6.7)

By calculating the phase difference between the driving amplitude
and the response oscillation, and then fitting to Eq. (6.7), we can also
derive the eigenfrequency and the damping. An example of this is shown
in Fig. 6.1E.

The stability of the methods

The ode45 solver was used with a variable (time) step size. On average,
around 20k simulation points were used for the harmonic response.

Both up sweep driving chirp signals and down sweep driving chirp
signals were tested. The bandwidth of the chirp was chosen to be 90%,
thus we investigate the oscillator response on a large range of frequencies.

Sensitivity to numerical noise The eigenfrequency of the harmonic
oscillator, as well as the center frequency of the driving chirp were varied
from 0.8 MHz to 5 MHz. The damping was varied from 0.1 to 1. The
chirp duration was 8 µs, and the simulation duration was from 0.5 µs
before, till 6 µs after the chirp. In all cases, using the power spectrum
fitting, the eigenfrequency and the damping was retrieved from the fitting
parameters.

For low damping, the error in eigenfrequency with the power spec-
trum method is smaller than with the phase difference method. For high
damping, the phase difference method is more accurate. In all cases, the
error in the found eigenfrequency was less than 1%.

The error in the damping with the power spectrum method was found
to be 25%. The phase difference method gives slightly more accurate
fitting values.

Sampling There were approximately 5k simulation points used for the
harmonic response. Using the fast Fourier transform (FFT) function
of Matlab, the frequency spectrum contains approximately 8k sample
points. The frequency range of interest, which extends around the center
frequency of the chirp in a 90% bandwidth, contains only 25 datapoints in
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experiments. This is enough to get an accuracy of the fitting parameters
within 2%.

We resample the response amplitude down to 100 sample points, to
verify if the methods are still able to determine the eigenfrequency and
the damping. Still, the accuracy of the eigenfrequency fit remains high,
the error is smaller than 5%. This happens for high damping values,
because the peak spans over a large part of the frequency content of the
chirp sweep, and at high frequencies, because the high frequency content
of the chirp sweep reaches the Nyquist-frequency.

In a few cases, there was no fit found. This only happened with the
power spectrum method, when using an up sweep chirp. In the other
cases, there was no difference observed between the power spectrum
method and the phase difference method.

For damping, the error in the fitting parameter is after downsampling
still approximately 25%. Again, the error is largest for high damping, and
high frequencies.

Noise We introduce noise to the simulation data to test the stability of
the methods. White noise with an amplitude of ±10 % of the maximum
response amplitude was added to the downsampled response amplitude.

The error in the eigenfrequency is, as expected, larger with noise. In
98% of the cases a fit with an error of 10% can be made. Both methods
give similar results.

The error in the damping is also larger. In 90% of the cases, a fit with
an error of 25% can be achieved.

Conclusion The method of deriving the eigenfrequency and the damp-
ing of a harmonic oscillator was simulated. Without noise added to the
simulations, the methods are very stable in deriving the eigenfrequency.
Even when the response amplitude curve is downsampled to 100 data-
points, the error is still only 5%.

The method also succeeds when noise is introduced. Adding noise to
the simulation datapoints will increase the error in the eigenfrequency.
However, even when noise with an amplitude of ±10% of the maximum
response amplitude is added, the eigenfrequency error will still be around
10%. In approximately 2% of the cases, a fit cannot be found.

The fit for the damping gives a much larger error. Especially oscilla-
tions with high damping give a broad peak in the power spectrum. Both
the power spectrum method and the phase difference method fail to give
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a good estimate of the damping. With noise, in 90% of the cases a fit with
an error of 25% can be achieved. Because of this, in this article we focus
mainly on deriving the eigenfrequency.

Our general experimental data falls within the limits described above.
The methods are suitable to determine eigenfrequency from experimen-
tal data.

6.2.4 Simulations using a free bubble model

An oscillating bubble can behave as a harmonic oscillator. Properties like
bubble radius, liquid density and surface tension, ambient pressure and
shell elasticity cause the bubble to have a resonance frequency. Heating
of the bubble, viscosity, sound radiation and the bubble shell account for
damping of the system. For small amplitude oscillations, the bubbles
behavior can be described by the equations of a harmonic oscillator.
However, if we increase the oscillation amplitude, the bubble oscillations
start to become nonlinear. This changes the frequency content in the
power spectrum of the oscillation response. This section investigates the
usability of the methods described in Sec. 6.2.2.

In order to determine if the methods to derive parameters like eigen-
frequency or damping are also functioning for free bubbles, we perform
simulations with a proven bubble model, the Rayleigh Plesset equation
for free floating bubbles. A detailed explanation of the equation is given
in [8, 10]. Linearization of the RP equation gives the Minnaert frequency
fM [11],

fM =
1

2π

√

1

ρR2
0

[

3γP0 +
2(3γ − 1)σ

R0

]

. (6.8)

This equation can be used to compare our simulations and experiments
to. In Eq. (6.8), ρ is the density of the liquid, R0 is the resting radius of the
bubble, γ is the polytropic exponent, P0 is the ambient pressure, and σ is
the surface tension of the liquid.

In Fig. 6.2 we show a typical simulation example. A bubble with a
resting radius R0 = 2 µm is insonified with a driving chirp of 1 kPa (shown
in Fig. 6.2A). The response was numerically solved, using the ode45-solver
in Matlab (The Mathworks). It is displayed in Fig. 6.2C. The powerspectra
of both signals are shown in Figs. 6.2B and D. Normalizing the response
powerspectrum with the driving frequencies, leads to the powerspectrum
in Fig. 6.2F. This normalized spectrum is then fitted to Eq. (6.5). The best
fit to the simulation data, give an eigenfrequency f0 = 2.02 MHz, and a
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Figure 6.2: Simulation results using the RP equation. In (A) the driving pressure
amplitude of a 1 kPa, 2 MHz chirp of 8 µs is shown. In (C) the radial response
amplitude of a the bubble is shown. The corresponding powerspectra are displayed
in (B) and (D). The phase difference between the driving amplitude and the
response amplitude (solid line) and the best fit to it (dotted line) are shown in (E).
The powerspectrum that shows the pure bubble response (solid line), and the best
(dotted line) are shown in (F); this is obtained by normalizing (D) with (B). The
fitting parameters of the power spectrum method: f0=2.02 MHz, δ=0.084, and for
the phase fitting: f0=2.02 MHz, δ=0.079.

damping δ = 0.084. The eigenfrequency of a 2 µm bubble, according to
Eq. (6.8), is 2.02 MHz indeed.

6.2.5 Comparison with microbubble spectroscopy

Harmonic oscillator We determined the fitting parameters f0 and δ us-
ing both the chirp resonance method and the microbubble spectroscopy
method. [5]. For a harmonic oscillator, and in the parameter space of
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0.8 MHz < f0 < 5 MHz and 0.01 < δ < 10 we found a perfect agreement
between the fitting parameters, provided the duration of the chirp was
longer than 2 µs. For shorter chirps, the bubble does not have time to
follow the imposed oscillations, and the method will no longer work.

Free bubble model Both the chirp resonance method and the mi-
crobubble spectroscopy method are linear methods, i.e. the calculation
of the fitting parameters f0 and δ is based on fitting with Eq. (6.5), which
is the amplitude of a harmonic oscillator, a linear system. Therefore, for
simulations with the RP equation, we distinguish two cases.

For small driving amplitudes, or short chirps, the bubble oscillations
are small, and can be considered linear. Both microbubble spectroscopy
and the chirp resonance method give similar results for the fitting param-
eters.

If the bubble oscillations become large and nonlinear, either by a high
driving amplitude or a long chirp length of medium amplitude, the value
of the found eigenfrequency starts to deviate. The chirp resonance values
(both by the power spectrum method and the phase method) are also
deviating, and they are lower than the microbubble spectroscopy value.
A more detailed analysis is given in Sec. 6.4.

6.3 Experiments using chirps

In the following Section, we describe the experiments that we have
performed with contrast agent microbubbles. We insonified contrast
agent microbubbles with a chirp driving pressure, and recorded the
response of the bubble. In the following Sections, the experimental setup
is described, followed by a Section about the experiments. Then, the data
analysis is explained, and the results are presented. Finally, a comparison
with the microbubble spectroscopy experiments is presented.

6.3.1 Experimental setup

The experimental setup is schematically drawn in Fig 6.3. A dilute
solution of individual SonoVue® contrast bubbles (Bracco Research S.A.,
Geneva, Switzerland) is prepared and injected through a capillary fiber
of diameter 200 µm immersed in water. The bubbles are illuminated
from below with an optical fiber and an image is produced by a micro-
scope (Olympus BXFM) with a 100× water-immersed objective and a 2×
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AWG

PVDF
Transducer
(at 25 mm)

100x objective

Optic fiber

Ø 200 µm capillary fiber

Figure 6.3: The experimental setup: an arbitrary waveform generator produces
ultrasound signals that are amplified by an amplifier and led to a transducer.
Contrast bubbles are injected through a 200 µm capillary fiber perpendicular to
the plane of the figure. The contrast bubbles are imaged from the top through a
100× objective and illumination is provided from below.

magnifier. We carefully check that only single bubbles are present in
the field of view of the microscope. The image is relayed onto a CCD
camera (Watec, CCIR LCL 902K) for size estimation, and simultaneously
onto the Brandaris high-speed camera [12]. The camera can record six
movies of 128 frames at up to 25 million frames per second. Illumination
to the microbubbles was provided with an optic fiber, connected to a
Xenon flash light source (Perkin Elmer, MVS 7010). The contrast bubbles
were insonified by a broadband single element transducer (Precision
Acoustics, PA081) with a center frequency of 1.7 MHz and a calibrated
range of frequencies from 0.7 to 6 MHz. An arbitrary waveform generator
(AWG), a Tabor 8026, connected to a PC, was used to produce the required
waveforms, which were then amplified by an ENI 350L amplifier.

6.3.2 Experimental method

The experiments described here were always performed within 6 hours
after the preparation of the contrast bubbles. This assures that all bubbles
are in a similar state, since, as described in Sec. 2.3.2, contrast bubbles
can change over time. The setup was programmed to record the response
of the individual contrast bubbles on up sweep and down sweep chirps.
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The procedure was as follows. First we isolated a single contrast agent
microbubble in the focus of the microscope. Then, using the image on
the Watec CCD camera, we estimated its size. Using previous resonance
experiments [5], we estimated the resonance frequency of the microbub-
ble. This estimated resonance frequency was then taken to be the center
frequency of the interrogation chirp, making sure the frequencies of the
chirp remained in the calibrated regime. A bandwidth of 80% was used.
Since the camera records the bubble oscillations at 15 Mfps, and the
camera records 128 frames, a typical movie has a duration of 8.5 µs. We
program the chirp to be roughly 8 µs in duration, so the whole time of
chirp driving is recorded in the movie. The first and last µs of the chirp is
tapered using a Tukey window. The amplitude of the driving pressure was
determined by a tradeoff of oscillation response linearity (low pressure
amplitude needed) and signal-to-noise ratio (high pressure amplitude
needed). In general, an oscillation amplitude of 60 kPa was chosen. Lower
and higher pressures have also been used here, to determine the effect of
pressure on the resonance frequency.

The dynamics of the contrast bubbles were recorded at 15 Mfps. From
the images, we extract the radius-time information. The radius-time
curves of individual bubbles were measured using a so-called dynamic
programming algorithm [13].

In Fig. 6.4A the applied pressure Pdriv as a function of time t is dis-
played. Below, in Fig. 6.4B the radius-time curve of a typical bubble is
shown. Also, the power spectra of both curves are shown, the driving
chirp power spectrum is shown in Fig. 6.4C, and the power spectrum of
the radial oscillation if shown in Fig. 6.4D.

6.3.3 Data analysis

If the power spectrum of the driving chirp (see Fig. 6.4A) was completely
flat, i.e. if all the frequencies with which we insonify the bubble were
equally represented, we could use this power spectrum to fit to the
resonance of a harmonic oscillator, to derive the eigenfrequency and
damping. In practice, due to the tapering of the chirp (see Eq. (6.3)),
this power spectrum is not entirely flat. By normalizing the calculated
spectrum by the driving frequencies, we make sure the power spectrum
is purely describing the presence of the frequencies in the bubble oscilla-
tion. This is shown in Fig. 6.4F.

The normalized power spectrum can be used to fit to the resonance
of a harmonic oscillator, to derive the eigenfrequency and damping of the
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Figure 6.4: Experimental data showing the chirp resonance method. Compare
this graph with Fig. 6.1. (A) shows the applied pressure, (C) shows the radius-time
curve of a typical bubble. (B) and (D) display the corresponding powerspectra
of the oscillations. (E) shows the phase difference between the driving pressure
and the R(t) curve (solid line) and the best fit (dotted line), and (F) shows the
normalized powerspectrum (solid line), also with best fit (dotted line). The fitting
parameters of the power spectrum method: f0=1.14 MHz, δ=0.34, and for the phase
fitting: f0=1.01 MHz, δ=0.17.
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bubble oscillation. In Fig. 6.4F, the powerspectrum curve shows a black
and a grey part. The grey part is unimportant, since this extends beyond
the frequency content of the chirps. There, the difference between exper-
imental response powerspectrum and theoretical insonation powerspec-
trum becomes large, because the experimental response powerspectrum
contains noise, whereas the theoretical insonation powerspectrum is still
quite smooth. Thus, only the black part of the curve is used for the fitting.
The dotted curve in Fig. 6.4F is the best fit to the harmonic oscillator
resonance.

Using the second method, by analyzing the phase difference between
the driving chirp and the radial response, the resonance frequency can
also be determined. In Fig. 6.4E, the experimental data (solid line) is fitted
by Eq. (6.7) (dotted line). For the phase delay method, it is very important
to know the exact time delay between the driving and the response signal.
However, in experiments the exact time delay between driving pressure
and response curve is accurate enough.

The used signals can be represented by g(t) = Paeiωt. If however we
add a delay in time, g(t) = Paeiω(t+∆t), which we also write as Paei(ωt+ϕ),
we add a phase shift ϕt = ω∆t = 2π f ∆t. The phase delay between the
signals thus increases linearly with the chirp frequency. This complicates
the fit to the phase delay. An extra fitting parameter ∆t is introduced, and
the total phase difference becomes:

ϕ = 2π f ∆t + arctan

(

δtot

f0

f − f
f0

)

. (6.9)

However, with good initial estimates for the fit parameters, experimental
data can also be analyzed with this method.

6.3.4 Results

In total 152 bubbles were analyzed with the power spectrum method.
Most bubbles (122) were insonified with a pressure of 60 kPa. However,
a total of 20 bubbles were insonified with a pressure lower than 60 kPa. 10
bubbles were insonified with a higher pressure.

The phase difference method is more susceptible to noise, therefore
only 98 bubbles were analyzed with this method. 76 bubbles at a pressure
of 60 kPa, 12 bubbles with a pressure lower than 60 kPa, and 10 bubbles
with a higher pressure.
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Figure 6.5: Experimentally determined eigenfrequency as function of bubble
radius, all at a driving pressure of 60 kPa. The plus symbols (+) are determined
with the power spectrum method, while the diamond shaped symbols (⋄) are
determined with the phase difference method. The solid line shows the Minnaert
frequency (Eq. (6.8)). The dashed line shows the best fit through the microbubble
spectroscopy data points of Ch. 3, see Fig. 3.6.

Here, the focus is on the bubbles that we measured with a driving
pressure of 60 kPa. In Fig. 6.5 the experimentally determined eigen-
frequency is reported as a function of bubble radius. As expected, the
eigenfrequency decreases with increasing bubble radius. In the figure,
both the datapoints recorded with the power spectrum method and the
phase difference method are shown. It can be seen that on average,
the datapoints recorded with the power spectrum method are slightly
higher than the datapoints recorded with the phase difference method.
In Sec. 6.4 an explanation is given for the difference.

6.3.5 Comparison with microbubble spectroscopy

We compare Fig. 6.5 to the data recorded with the microbubble spec-
troscopy data (see [5] or Fig. 3.6). The solid line in both graphs represents
the Minnaert equation for free gas bubbles (Eq. (6.8)) with similar param-
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eters.
For comparison, the best fit through the microbubble spectroscopy

datapoints of Ch. 3, is also shown in Fig. 6.5 (see Fig. 3.6). We can see that
the data recorded with both chirp resonance methods, lies below the data
recorded with the microbubble spectroscopy. How is this possible?

There are a number of obvious differences between the experiments.

• The microbubble spectroscopy is done on BR-14 bubbles, while
the chirp resonance experiments were done on SonoVue® bubbles.
Both bubbles are manufactured by Bracco Research S.A., Geneva,
Switzerland. The most important difference between the bubbles
is the gas. BR-14 bubbles contain C4F10 gas [14], while SonoVue®
bubbles contain SF6 gas. While C4F10 gas is heavier than SF6 gas,
the mass is negligible compared to the mass of water, and therefore
there should be no difference in the oscillating behavior of the
bubble.

• The method itself is different. However, with the simulations (see
Sec. 6.2) we proved both the values found by the microbubble
spectroscopy method, and the chirp resonance methods should not
differ from each other.

• The most probable reason is the fact the datapoints in the mi-
crobubble spectroscopy method were all recorded at driving pres-
sures of 40 kPa and less. Due to a low signal-to-noise ratio at 40 kPa
with the chirp resonance measurements, it was necessary to record
the data at a higher pressure of 60 kPa. The following Section will go
into more detail on pressure and oscillation amplitude effects.

6.4 Oscillation amplitude dependence

It is important to understand the frequency-amplitude relation of oscil-
lating bubbles. It is known from nonlinear oscillating systems, that the
resonance peak in an amplitude versus frequency plot bends over towards
a lower or a higher frequency (depending on it being a system with a
softening or hardening spring) for increasing oscillation amplitude. In
the Appendix, Sec. 6.7, we perform an analytical analysis to determine
the peak shift for an oscillating bubble system. As we can see from
Figs. 6.18 and 6.19 in the Appendix, for an oscillating bubble the peak of
the resonance frequency shifts towards lower frequencies for increasing
pressure amplitude.
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In order to get the maximum bubble response, it is important to know
this peak frequency. Strictly speaking, as discussed in Ch. 3 and seen
from Eq. (6.6), the frequency we derive is the eigenfrequency f0 while the
peak is found at the resonance frequency fres. However, as discussed in
Ch. 3, on average the total damping δtot of the contrast microbubbles was
measured to be 0.26. Equation (6.6) predicts the resonance frequency to
be only 3% lower than the eigenfrequency. Since the resonance frequency
and the eigenfrequency are both linear concepts, in the following section
we will use the term ’peak frequency’. In this section we will discuss our
simulations and experiments to measure this peak frequency.

The shift of the peak is a nonlinear effect. Both the microbubble
spectroscopy method and the chirp resonance methods however are
based on fitting with linear equations. Also, normalizing the (radial)
response power spectrum with the driving (pressure) power spectrum is
only allowed when the system is linear. We therefore expect a deviation
from the exact peak frequency value with the methods. In the following
section we investigate the accuracy of both the microbubble spectroscopy
method as well as the chirp resonance methods for nonlinear oscillations.

6.4.1 Simulations

We performed simulations using microbubble spectroscopy and both
chirp resonance methods to determine the accuracy of both methods.

For our understanding, we discard shell effects and focus on pure
bubble behavior. We therefore use the Rayleigh Plesset model for free
floating bubbles, as described in Sec. 6.2.4. In the following sections the
specific simulation methods are described.

Microbubble spectroscopy

From the Minnaert equation, one can calculate the eigenfrequency of a
free bubble of R = 3 µm will be at f0 = 1.26 MHz. We numerically calculated
the radius-time curves of a bubble responding on 30-cycle bursts of a
fixed frequency, from 0.5 to 1.5 MHz. This simulation was performed
from 5 kPa to 35 kPa with intervals of 5 kPa, and also a simulation was
performed at 1 Pa. From the R(t)-curves, a power spectrum is constructed
and this is fitted to the equation of a harmonic oscillator, which gives in
the best fit a value for the peak frequency.

In experiments, due to a limited recording window, an 8-cycle burst
is normally used. An 8-cycle window is expected to give a slightly
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higher estimate for the peak frequency, since the oscillation amplitude
will not grow as much as with the 30-cycle window. Further, in the 8-
cycle window, the bubble might still contain transient oscillations, which
’pollute’ the power spectrum, which may lead to a less accurate value for
the peak frequency. Here, a 30-cycle burst is examined, because there the
bubble will have the best chance to reach an equilibrium oscillation, free
of transient dynamics. This will give the most accurate value for the peak
frequency.

Chirp resonance

Again, a 3 µm free bubble was considered. The driving pulses had a
duration of 8 µs, a center frequency of 1.26 MHz and a bandwidth of 90%.
The amplitude of the driving pressure was varied from 1 to 35 kPa in steps
of 1 kPa. A normalized power spectrum was constructed, and the phase
difference was calculated, as explained in Sec. 6.2. Both from the power
spectrum and from the phase difference, in the best fit a value for the peak
frequency was found.

Simulation results

In Fig. 6.6 the constructed powerspectra are shown.
Note that they are in a linear-linear plot, and the physical quantity on

the y-axis is different for the microbubble spectroscopy plot and the chirp
resonance plot. This is inherent to the methods. Since we only fit the
shape, and since the peak frequency corresponds to the position of the
peak on the x-axis, we are allowed to compare the methods.

The shape of the resonance curves changes with increasing oscillation
amplitude. With the microbubble spectroscopy method, the curves
become ’skewed’ with increasing oscillation amplitude, as expected an-
alytically [15, 16]. The shape of the peaks in the power spectrum of
the chirp resonance method are different from the peaks in the power
spectrum with the microbubble spectroscopy method. Their shapes
remain similar, while their positions shift to lower frequencies.

From the calculations in the Appendix, it follows that the peak fre-
quency decreases with the increasing radial oscillation amplitude. We
therefore extract the peak frequencies from the powerspectra in Fig. 6.6,
and plot them versus the normalized oscillation amplitude Anorm =
(R+ − R−)/R0 (R+ is the maximum radial amplitude and R− is the
minimum radial amplitude during the simulation) in Fig. 6.7. From
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Figure 6.6: Constructed power spectra by microbubble spectroscopy and chirp
resonance for different driving pressure amplitudes.
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deviation from the analytically found peak frequency as numerically solved with
the different methods.
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this graph, we conclude that all methods predict a peak shift to lower
frequencies with increasing oscillation amplitude. Only the phase dif-
ference method underestimates the peak frequency slightly (about 1%
at an oscillation amplitude of 1). Furthermore, the peak frequency
determination with the microbubble spectroscopy method is deviating
from the ’real’ peak frequency when the oscillation amplitudes become
larger than approximately 0.7. In all cases, the curves collapse onto the
Minnaert equation at Anorm = 0.

In Fig. 6.7B the deviation from the analytically found peak frequency
is displayed. The deviation D of the numerically found values for the
peak frequency from the analytical peak frequency was given by D =
( fpeak,analytical − fpeak,numerical) / fpeak,analytical .

The power spectra method and the microbubble spectroscopy method
are able to determine the peak frequency of a bubble with high precision
(<1.5% error), even when a bubble is oscillating with very high amplitude
of Anorm = 1. Analyzing the phase difference also leads to a good estimate,
however in all cases the ’real’ peak frequency is slightly underestimated
(up to 2.5% at Anorm = 1). There is also a difference observed between up
sweep chirp and down sweep chirps. This is discussed in Sec. 6.5.

6.4.2 Experiments

With the setup described in Sec. 6.3.1, both the microbubble spectroscopy
experiments, as well as the chirp resonance experiments were performed.
As described in [5] or in Ch. 3 the microbubble spectroscopy experiments
were prepared and performed. The chirp resonance experiments were
done as described in Sec. 6.3.

The driving pressures were varied between 30 and 150 kPa. Both in
the microbubble spectroscopy experiments and in the chirp resonance
experiments, the bubbles oscillated with a mean oscillation amplitude
Anorm = 0.16 (For comparison, in the microbubble spectroscopy experi-
ments in [5] or in Ch. 3 the mean oscillation amplitude was 0.07). Only
5 bubbles in chirp resonance and 1 bubble in microbubble spectroscopy
were seen to oscillate with an amplitude larger than 0.5.

All the data is grouped into 3 categories:

I. Anorm ≤ 0.1

II. 0.1 < Anorm ≤ 0.2

III. Anorm > 0.2
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Figure 6.8: Experimentally determined peak frequency as function of bubble
radius, for the microbubble spectroscopy method and both chirp resonance
methods. In all graphs, the solid line represents the Minnaert frequency (Eq. (6.8)).
In A, B and C the peak frequency decrease as function of oscillation amplitude is
clearly visible. D combines the data of A, B and C with 0.1 < Anorm ≤ 0.2 (all ⋄
symbols); all this data collapses onto one curve.

The experiments were analyzed according to the analysis which is
described in [5] or in Ch. 3 for the microbubble spectroscopy experiments,
and in Sec. 6.3 for the chirp resonance experiments. In Fig. 6.8 the
experimental data is shown. All graphs in Fig. 6.8 show the peak frequency
as function of resting radius of the bubble. For comparison, the Minnaert
frequency (Eq. (6.8)) is also drawn in the graphs. Fig. 6.8A shows the peak
frequency which was determined using the microbubble spectroscopy
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method. Fig. 6.8B is determined using the chirp resonance – power
spectrum method, and Fig. 6.8C is also with chirp resonance with the
phase difference method. In all three graphs, the three categories are
displayed. It can be seen, in all three graphs, that the peak frequency
decreases with increasing oscillation amplitude. Fig. 6.8D contains peak
frequency data from category II, derived with the three methods (this
corresponds with the diamond shaped symbols in Fig. 6.8A, B and C). All
these datapoints collapse onto a single curve.

6.5 Difference between up sweep and down sweep

chirps

So far, the difference between up sweep chirp and down sweep chirp has
not been discussed. If we take a close look at Fig. 6.7, we see that an up
sweep and a down sweep chirp do not lead to the exact same value for
the peak frequency. If we study individual R(t) curves, we see that in
some cases the response is quite different, due to the nonlinear bubble
response.

New imaging modes, including pulse inversion [17, 18], second or
higher harmonic imaging [19, 20], and subharmonic imaging [21, 22],
exploit the nonlinear properties of bubbles. In pulse inversion, an ultra-
sound wave followed by a delayed phase-inverted replica is transmitted
into tissue. For a linear medium, the echo from the second wave is
an inverted copy of the response from the first wave, and the sum of
the two responses is zero. For a nonlinear microbubble system, the
sum is not zero and the residue indicates the presence of microbubbles.
Pulse inversion achieves substantial improvement of the image quality in
echoscopy.

As a result of the nonlinear bubble behavior, the bubble responses on
chirp driving signals are not time-reversed replicas [23–25]. The nonlinear
bubble response on up sweep chirps and down sweep chirps, named
chirp reversal, can be of potential interest in contrast imaging as well. In
the following sections we will investigate the bubble response difference
in greater detail, both in simulations and in experiments.

6.5.1 Simulations

The Rayleigh–Plesset equation was solved numerically for free gas mi-
crobubbles. In this section, we chose a different window function over
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the chirps. In contrast imaging, there is a tradeoff between wave duration
and axial resolution: increasing the wave duration decreases the axial
resolution. We used a shorter wave duration, and to minimize sidelobes in
the frequency spectrum even more than the Tukey window (see Eq. (6.3))
does, we therefore replaced the Tukey window with the following Gaus-
sian window:

w(t) = exp

(

− 1

2

(

α
t

T/2

)2)

(6.10)

The α, which is the reciprocal of the standard deviation, a measure of
the width of its Fourier transform, and the T which represents a time
period, were tuned to get a linear frequency sweep magnitude of 850 kHz
centered around the center frequency in the chirp transmit signals. This
corresponds to a bandwidth of 50% for a center frequency of 1.7 MHz.

Up sweep and down sweep chirps of 1.7 MHz and 10 kPa were used
in transmit. The corresponding resonance radius of the 1.7 MHz chirp
center frequency is Rres ≈ 2.3 µm. Here, we distinguish four different
cases.

I. The bubble radius is below the resonance radius
(R0 < Rres or fcenter > fres).

II. The bubble radius is at the resonance radius
(R0 ≈ Rres or fcenter ≈ fres).

III. The bubble radius is above the resonance radius
(R0 > Rres or fcenter < fres).

IV. The bubble radius is far away from the resonance radius
(R0 ≫ Rres and R0 ≪ Rres or fcenter ≪ fres and fcenter ≫ fres).

Microbubbles of 1.9 µm, 2.3 µm, 3.8 µm, and 1.0 µm were considered.
The simulated radii correspond to bubbles below resonance size, at
resonance, above and far away from resonance size.

Figure 6.9 shows the response of a 1.9 µm bubble to an up sweep chirp
(Fig. 6.9B) and down sweep chirp (Fig. 6.9D). This is an example of case
I, with R0 < Rres. The curves show a longer bubble oscillation when fre-
quencies sweep increasing compared to the decreasing frequency sweep.

This observation is reversed for the 3.8 µm radius bubble (Fig. 6.10)
where the up sweep chirp signal produces shorter bubble oscillations
compared to the down sweep chirp. This is an example of case III, with
R0 > Rres.
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Figure 6.9: Simulated radius-time curves of a 1.9 µm free microbubble. (A) The
driving pressure (1.7 MHz, 10 kPa) of an up sweep chirp, and (C) a down sweep
chirp. The corresponding R(t) curves are shown in (B) and (D). This is an example
of case I.

The oscillations of a resonant bubble (case II, R0 = Rres, radius of
2.3 µm) excited by an up sweep chirp and down sweep chirp are given
in Fig. 6.11 and appear to be almost identical.

Bubbles that are far away from resonance give identical responses to
both chirps as shown in Fig.6.12 for a microbubble of 1.0 µm radius. The
results from these simple simulations indicate that bubbles at resonance
or far away from resonance do not sense differences between up sweep
and down sweep excitation signals. However bubbles close to resonance
respond differently to chirps with up sweep and down sweep frequencies.

To quantitatively describe the response difference, we calculate the
cross-correlation between the up sweep response and the down sweep
response. Since a cross-correlation on two signals gives a value close to
one if signals are similar, and a value close to zero if signals are not similar,
we expect to see two dips in the cross-correlation signal: one dip just
below, and one dip just above the resonance frequency. We calculate the
response of a 2 µm bubble on up and down sweep chirps with a frequency
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Figure 6.10: Simulated radius-time curves of a 3.8 µm free microbubble. (A) The
driving pressure (1.7 MHz, 10 kPa) of an up sweep chirp, and (C) a down sweep
chirp. The corresponding R(t) curves are shown in (B) and (D). This is an example
of case III.

between 500 kHz and 6 MHz, and with a driving pressure of 10 kPa.
We choose for cross-correlation over subtraction, which is also a

measure of response difference, because this method is less dependent on
timing. Using subtraction, the exact position of the responses in time is
necessary for an accurate measure of response difference. In simulations,
this is not a problem. However, in experiments, due to inhomogeneities,
the response can be slightly delayed. This would be falsely seen as a
response difference.

We name the up sweep response u, and the down sweep response d.
Both signals have a length of N samples. The calculated cross-correlation
is then given by

Cud(m) =











N−m−1

∑
n=0

un+mdn m ≥ 0

Cdu(−m) m < 0

(6.11)

Then, the sequence is normalized, so that autocorrelations at zero lag are
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Figure 6.11: Simulated radius-time curves of a 2.3 µm free microbubble. (A) The
driving pressure (1.7 MHz, 10 kPa) of an up sweep chirp, and (C) a down sweep
chirp. The corresponding R(t) curves are shown in (B) and (D). This is an example
of case II.

identical to 1.

The cross-correlation of the up sweep response with the time-reversed
down sweep response is shown in Fig. 6.13. A correlation of 1 corresponds
to identical signals. As expected, there are two dips observed in the cross
correlation signal, one dip just below the resonance frequency, and one
dip just above the resonance frequency. For a bubble with a radius of
2 µm, the resonance frequency is 2.0 MHz. The dips correspond to the
response differences in case I and case III. When the center frequency of
the chirp is just below the resonance frequency ( fcenter < fres), the cross-
correlation amplitude decreases to 0.73 (case III). At resonance (case II),
the cross-correlation amplitude is approximately 0.86. When the center
frequency of the chirp is slightly bigger than the resonance frequency
(case I), the cross-correlation amplitude decreases to 0.58. Far away from
resonance (case IV), either above or below, the cross-correlation goes to
1.
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Figure 6.12: Simulated radius-time curves of a 1.0 µm free microbubble. (A) The
driving pressure (1.7 MHz, 10 kPa) of an up sweep chirp, and (C) a down sweep
chirp. The corresponding R(t) curves are shown in (B) and (D). This is an example
of case IV.

6.5.2 Experimental results

Hydrophone calibration

The chirp reversal experiments were performed with the setup described
in Sec. 6.3.1. Using a needle hydrophone (Precision Acoustics, Dorset,
UK), the transducer was calibrated from 0.7 MHz to 6 MHz, using bursts
of fixed frequency. With the calibration, the chirp voltage signals were
modified to give the chirp pressure signals the required shape. As a
check, the chirp pressure signals were measured with the hydrophone
again. Figure 6.14 shows examples of transmitted chirps, as measured
in the focus of the transducer. Figure 6.14A displays a measured up
sweep chirp with a center frequency of 1.7 MHz and 50% bandwidth at an
amplitude of 60 kPa approximately. Figure 6.14B shows an identical chirp
with frequencies sweeping down. The measurements demonstrates also
that the single element transducer does not affect the transmitted chirp
waveforms.
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Figure 6.14: Example hydrophone measurements of the actual transmitted up
sweep (A) and down sweep (B) chirps with center frequency of 1.7 MHz and 50%
bandwidth.
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Chirp reversal experiments

In Fig. 6.15, we present the result obtained for a BR-14 microbubble with
a radius of 2.55 µm. The resonance frequency of such a microbubble
is around 2 MHz, according to microbubble spectroscopy experiments
of Ch. 3 or [5]. The bubble is successively insonified with the following
chirps: an up sweep chirp at 1.3 MHz, 120 kPa, a down sweep chirp at
1.3 MHz, 120 kPa, an up sweep chirp at 2.5 MHz, 120 kPa, a down sweep
chirp at 2.5 MHz, 120 kPa and an up sweep chirp at 1.3 MHz, 120 kPa.
The first pair of transmitted chirps have center frequencies below the
resonance frequency of the bubble, the next pair of chirps have a center
frequency above the resonance frequency of the microbubble, and the last
chirp, as a control, is identical to the first chirp.

The first response curves (Fig. 6.15B & D) demonstrate a difference
in the bubble response where the up sweep chirp generates a shorter
oscillation of the bubble, whereas the down sweep chirp produces a much
longer bubble response. They are an experimental example of case III.
The initial frequencies of the transmitted up sweep chirp are close to the
resonance frequency of the microbubble, while frequencies transmitted
last are far away from the microbubble’s resonance frequency. This causes
the bubble oscillation to damp out, generating a short overall response.
On the other hand, the down sweep chirp starts with frequencies further
from resonance and ends with frequencies that are close to the microbub-
ble’s resonance frequency. It is responsible for generating different bubble
responses for up sweep and down sweep chirps. This causes the bubble
oscillation to sweep up into resonance oscillations, and translates into
longer and larger radial excursions.

The second pair of response curves (Fig. 6.15F & H) show the reversed
behavior. These are experimental examples of case I. The up sweep chirp
causes a longer oscillation of the bubble, whereas the down sweep chirp
generates a much shorter response. Here, the initial frequencies of the
transmitted up sweep chirp are away from the resonance frequency of
the bubble, which causes the oscillation to damp out. On the other
hand, the down sweep chirp starts with frequencies close to the resonance
frequency of the bubble, which causes the bubble oscillation to sweep up.

The bubble was successively insonified with a fifth and final chirp,
which is a copy of the first chirp. The dashed line in Fig. 6.15B is
the final up sweep chirp, which is used as a check. It is seen that
the response is identical to the first up sweep chirp (solid line). This
demonstrates that the microbubble’s response has not been modified
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Figure 6.15: Experimental results: In the left column the driving chirps are shown,
in the right column the corresponding measured R(t)-curves are displayed. The
examined BR-14 microbubble had a radius of 2.55 µm. The bubble was excited
with (A) an up sweep chirp of 1.3 MHz, 120 kPa, (C) a down sweep chirp of
1.3 MHz, 120 kPa, (E) an up sweep chirp of 2.5 MHz, 120 kPa and (G) a down
sweep chirp of 2.5 MHz, 120 kPa. Furthermore, in (B) both the response on the first
up sweep chirp (solid line) and the check up sweep chirp (dashed line) are shown.
Note that (B) and (D) are an example of case III, while (F) and (H) are an example
of case I.
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during the experiment.
Similar results are obtained for a smaller microbubble with a radius

of 1.9 µm, excited at chirps of 1.75 MHz and 2.8 MHz, both at 100 kPa.
The responses are given in Fig. 6.16. The resonance frequency of such
a bubble is 2.5 MHz. The transmitted chirps in Fig. 6.16A & C are thus
below the resonance frequency (case III), and the chirps in Fig. 6.16E & G
are above the resonance frequency (case I).

Figure 6.17 shows an example obtained with a much smaller mi-
crobubble excited with chirps of 1.7 MHz and 120 kPa. This is an
experimental example of case IV. The resonance frequency of such a
bubble is higher than 3.5 MHz, indicating that both up sweep and down
sweep chirps contain a frequency bandwidth far away from the resonance
of the microbubble. This is demonstrated in the radius-time curve where
both chirps produce similar microbubble vibrations.

6.5.3 Conclusions on chirp reversal

The optical observations show that a contrast microbubble responds
differently to a chirped signal depending whether the chirp contains
up sweep or down sweep frequencies. The resonance frequency of the
microbubble plays a major role.

When the transmitted center frequency is higher than the resonance
frequency of the microbubble (case I), up sweep chirp generates a much
shorter signal. This might be ascribed to the fact that in up sweep
chirp signal, frequencies from the lower bandwidth are transmitted first
and induce the bubble into resonance behavior. However, this reso-
nance behavior is immediately damped and submerged by responses
from frequency components of the upper bandwidth, which insonify the
microbubble during the latest portion of the chirp signal. These high
frequencies are away from the microbubble resonance. These features
are shown in simulations in Fig. 6.9 and in experiments in Figs. 6.15F & H,
and 6.16F & H.

When the resonance frequency of the microbubble is higher than the
transmitted frequency (case III), the microbubble will also react differ-
ently to up sweep chirp and down sweep chirp. However in this situation,
the oscillations will be longer for up sweep chirp than down sweep chirps.
This is demonstrated in simulations in Fig. 6.10 and experimentally in
Figs. 6.15B & D, and 6.16B & D, where the microbubbles with resonance
frequencies higher than the transmitted frequency oscillate longer under
a down sweep chirp excitation compared to an up sweep chirp.
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Figure 6.16: Experimental results: In the left column the driving chirps are shown,
in the right column the corresponding measured R(t)-curves are displayed. The
examined BR-14 microbubble had a radius of 1.9 µm. The bubble was excited with
(A) an up sweep chirp of 1.75 MHz, 100 kPa, (C) a down sweep chirp of 1.75 MHz,
100 kPa, (E) an up sweep chirp of 2.8 MHz, 100 kPa and (G) a down sweep chirp
of 2.8 MHz, 100 kPa. Furthermore, in (B) both the response on the first up sweep
chirp (solid line) and the check up sweep chirp (dashed line) are shown. Note that
(B) and (D) are an example of case III, while (F) and (H) are an example of case I.
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Figure 6.17: Experimental results: In the left column the driving chirps are shown,
in the right column the corresponding measured R(t)-curves are displayed. The
examined BR-14 microbubble had a radius of 1.5 µm. The bubble was excited with
(A) an up sweep chirp of 1.7 MHz, 120 kPa, (C) a down sweep chirp of 1.7 MHz,
120 kPa. Note that (B) and (D) are an example of case IV.

For microbubbles with resonance frequencies far away from the cen-
ter frequency of the excitation chirp, we do not observe differences in the
bubble behavior for up sweep and down sweep chirps. In this case, the
microbubble resonates far away from the applied frequency bandwidth
and thus responds similarly to both chirps. This was shown in simulations
in Fig. 6.12, and experimentally in Fig. 6.17.

Although the measurements and simulations were carried out on
individual microbubbles, we believe that these results might be ap-
plied for contrast imaging in order to improve the contrast to tissue
ratio since tissue scatterers do not resonate and thus are expected to
provide the same response to both up sweep and down sweep chirps.
This however needs more experimental verification using in-vitro setups
and acoustic measurements. Exploitation of chirp reversal for con-
trast imaging provides other advantages. This method should operate
in linear mode where low acoustic pressures are transmitted. Hence
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microbubble destruction is avoided and the nonlinearity of tissue is
reduced. Moreover, the full frequency bandwidth of the transducer
can be exploited. Using chirps provides additional signal to noise ratio
improvements since longer waveforms are used [26, 27]. In order to
test our approach for contrast detection, we need to further explore the
influence of microbubble size distribution on the obtained results since
our current data are obtained on individual microbubbles.

6.6 Conclusions

Simulations were performed using the chirp resonance methods to derive
the peak frequency of a contrast agent microbubble to determine the sta-
bility in experiments. Using a harmonic oscillator model, we concluded
the method can derive the peak frequency of a bubble with an accuracy
of 5%, even when the radius-time curve consists of 100 datapoints. The
method is also stable to noise.

In experiments a difference between microbubble spectroscopy and
the chirp resonance methods was observed using similar driving pressure
amplitude. The peak frequency determined with the chirp resonance
methods is lower than the data determined with the microbubble spec-
troscopy method. The difference was attributed to the difference in radial
oscillation amplitude.

An amplitude oscillation dependence of the peak frequency was in-
vestigated. The eigenfrequency is a bubble property, which only depends
on liquid density, ambient (and vapor) pressure, surface tension and a
polytropic exponent. When a bubble oscillates with very high oscillation
amplitude, the natural period of oscillation of the bubble increases. The
frequency, with which the bubble is then oscillating, we name the peak
frequency. Both in simulations and in experiments we see that the peak
frequency of a bubble decreases with increasing oscillation amplitude.

Simulations were performed on a R = 3 µm bubble. With three meth-
ods, microbubble spectroscopy, chirp resonance power spectra analysis,
and chirp resonance phase difference analysis the peak frequency was
determined. All methods can determine the peak frequency within 2.5%
of the analytically determined peak frequency, even up to very nonlinear
oscillations with a normalized amplitude Anorm = (R+ − R−)/R0 of 1.

Experiments were performed with all three methods. The decrease
of the peak frequency as function of increasing oscillation amplitude
is experimentally observed. All three methods report the same peak
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frequency as function of oscillation amplitude.
And finally, we observed differences in the radial response on up

sweep chirps and down sweep chirps. These differences, due to nonlinear
behavior of the bubbles, can be exploited in contrast imaging. Simu-
lations and experiments show that the asymmetry in bubble response
is maximum just below and just above the resonance frequency of the
bubble. At resonance, and far away from resonance, the bubble response
on up sweep and down sweep chirps is similar.

6.7 Appendix: Analytical expression of the peak fre-

quency

6.7.1 Introduction

The governing equations of oscillating gas bubble are highly nonlinear,
and cause difficult mathematical problems. Therefore, many of the
existing studies are based on linearized analysis [11] or on numerical
computations [10].

In this appendix, we describe our calculations on the shift of the
peak frequency from eigenfrequency to lower frequencies of a free gas
bubble. From numerical simulations and from experiments, we see the
peak frequency decrease with increasing pressure. Since the methods
to derive the peak frequency from numerical data or experimental data
(discussed in Ch. 3 and Ch. 6) are based on fitting with linear models,
there arise deviations at higher pressures. So whether the measured peak
frequency decrease is real, or an artifact of the fitting, can be determined
by an analytical solution of the peak frequency of the bubbles.

6.7.2 Description of the calculations

First, we retain from the Rayleigh–Plesset equation the essential terms.
With this equation, we will explain our calculations. We begin with:

R̈R +
3

2
Ṙ2 =

Pg − P0

ρ
(6.12)

Here Pg is the gas pressure in the bubble, and P0 is the ambient pressure.
They are related by the following relation: Pg = P0(R0/R)3γ. If we
now take γ = 4/3, the relation becomes Pg = P0(R0/R)4. Different
substitutions are possible now [28], yet we now write R̈ = d

dt Ṙ and
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since R is only a function of t we swap integration variable t for R. So
d
dt Ṙ = Ṙ d

dR Ṙ = 1
2

d
dR Ṙ2. The left hand side of the equation can then we

rewritten as 1
2 R d

dR Ṙ2 + 3
2 Ṙ2, which equals 1

2R2
d

dR (R3Ṙ2), and thus Eq. (6.12)
becomes:

d

dR
(R3Ṙ2) =

2P0

ρ
(

R4
0

R2
− R2). (6.13)

Now, we integrate Eq. (6.13) from the minimum radius the bubble will
assume, R−, to the bubble radius R. Equation (6.13) becomes:

R3Ṙ2 =
2P0

ρ

∫ R

R−

( R4
0

R̃2
− R̃2

)

dR̃, (6.14)

This equation can also be derived another way by considering the
energy balance [29]. We start with the velocity potential Φ in the fluid
around a bubble, which is given at any point in the fluid at distance r from
the bubble center by:

Φ = −R2 Ṙ

r
(6.15)

The kinetic energy Ekin of the fluid is given by the well-known integral

Ekin = −ρ

2

∫

A
Φ

∂Φ

∂r
dA (6.16)

over the surface A = 4πr2 of the bubble, where ∂Φ/∂r is the derivative of
Φ in the radial direction. The kinetic energy is thus:

Ekin = 2πρR3Ṙ2 (6.17)

With an instantaneous volume V, we consider the potential energy from
the minimum bubble volume V− is given by:

Epot =
∫ V

V−
PdV (6.18)

Rewriting the equation for the radial variable R̃, and using P = Pg − P0,
Eq. (6.18) becomes:

Epot =
∫ V

V−

(

P0(
R0

R
)4 − P0

)

dV = 4πP0

∫ R

R−

( R4
0

R̃2
− R̃2

)

dR̃ (6.19)

The total energy remains the same, so potential energy must be equal to
the kinetic energy (Ekin = Epot):

R3Ṙ2 =
2P0

ρ

∫ R

R−

( R4
0

R̃2
− R̃2

)

dR̃, (6.20)
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and this equation is similar to Eq. (6.14).
We can rewrite this to:

R3Ṙ2 =
2P0

ρ

(

R4
0(

1

R−
− 1

R
) − 1

3
(R3 − R3

−)

)

. (6.21)

The bubble wall velocity reaches zero again, when the bubble reaches it
maximum size, R+. Solving Eq. (6.21) for R4

0 gives R4
0 = 1

3(R2
− + R+R− +

R2
+)R+R−. Equation (6.21) then becomes:

Ṙ2 =
2P0

ρR3

(

1

3
(R2

− + R+R− + R2
+)R+R−(

1

R−
− 1

R
)− 1

3
(R3 − R3

−)

)

, (6.22)

or:

Ṙ2 =
2P0

3ρ

1

R4

(

(R+ − R)(R − R−)(R2 + RR+ + RR− + R2
− + R+R− + R2

+)
)

.

(6.23)
As a check, we see that the bubble wall velocity reaches zero (Ṙ = 0) when
the bubble reaches its minimum radius (R = R−) or its maximum radius
(R = R+).

We now have an expression of Ṙ in terms of R, R− and R+. We integrate
the bubble radius from R− to R+, and calculate the time this takes. This
equals one half of an oscillation period. From that we can easily calculate
the oscillation frequency. So we integrate this expression, and get:

∫ T/2

0
dt =

T

2
=

∫ R+

R−

AR2dR√
BR4 + CR + D

(6.24)

where A, B, C, and D are given by the following expressions:

A =

√

3ρ

2P0
(6.25)

B = −1 (6.26)

C = R3
− + R+R2

− + R2
+R− + R3

+ (6.27)

D = −(R2
+ + R+R− + R2

−)R+R− (6.28)

This integral can be solved by the symbolic toolbox of Matlab or by Maple,
and then be evaluated as a function of oscillation amplitude (R+ and R−).
The evaluation of Eq. (6.24) is shown in Fig. 6.18. Note that for R0 − R− =
R+ − R0 = 0, the oscillation frequency falls onto the eigenfrequency of the
bubble.
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Figure 6.18: Evaluation of the solution of Eq. (6.24), evaluated at R0=3 µm, versus
the normalized amplitude Anorm = (R+ − R−)/R0.

6.7.3 Coupling the oscillation amplitude to the driving pressure

To couple the oscillation amplitude with the driving pressure, numerical
simulations are performed with Matlab’s ode45-solver, which can solve
Eq. (6.12) numerically. Finding the correct peak frequency at a certain
driving pressure, is an iterative process. First, an estimation was made
of the peak frequency. Then, at that frequency, with a certain driving
pressure, Eq. (6.12) was solved for a burst of 100 cycles. When the initial
transient effects have damped out, the maximum radius R+ and the
minimum radius R− were taken from the R(t)-curve. With these values,
the peak frequency can be calculated, by solving Eq. (6.24). Iteratively, a
convergence can be found to the correct peak frequency.

6.7.4 Extending the basic RP equation

To improve our simulations with the RP equation, Eq. (6.12) can be
extended with more terms without altering the methods and calculations
described above. The value for κ can also be changed to an arbitrary value
without analytical problems. Only the viscous damping term (4µṘ/R)
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Figure 6.19: Evaluation of the solution of the half period integral, evaluated at
R0=3 µm, for driving pressure amplitudes from 0 to 35 kPa.

complicates the calculations extensively. We choose to neglect this term,
since it will not change the peak frequency significantly.

Equation (6.12) will then change to

R̈R +
3

2
Ṙ2 =

1

ρ

{(

P0 +
2σ

R0
− Pv

)(

R0

R

)3κ

+ Pv −
2σ

R
− P0

}

(6.29)

The integral of the half period (the more complex equivalent of Eq. 6.24),
is too lengthy to display here. With Maple, this integral can be solved.
The curve in Fig. 6.19 was constructed iteratively at each pressure, by
successively estimating the peak frequency, numerically finding the ra-
dial amplitudes R− and R+, and calculating the corresponding peak
frequency; thus converging to the correct peak frequency at that pressure.
For a driving pressure amplitude of 0 kPa, the oscillation frequency
becomes the Minnaert frequency (Eq. (6.8)).

References

[1] P.N.T. WELLS, Biomedical Ultrasonics. London: Academic Press, (1977).



6.7 REFERENCES 133

[2] N. DE JONG, Acoustic properties of ultrasound contrast agents, Ph.D thesis,
Erasmus University Rotterdam (1993).

[3] L. HOFF, Acoustic Characterization of Contrast Agents for Medical Ultra-
sound Imaging, Kluwer Academic Publishers, Dordrecht (2001).

[4] A. L. KLIBANOV, "Ultrasound contrast agents: Development of the field and
current status", Top. Curr. Chem. 222, 73–106 (2002).

[5] S.M. VAN DER MEER, B. DOLLET, M. VOORMOLEN, C.T. CHIN, A. BOUAKAZ,
N. DE JONG, M. VERSLUIS, D. LOHSE, "Microbubble spectroscopy of
ultrasound contrast agents", J. Acoust. Soc. Am. 121(1), 648–656 (2007).

[6] J.M. BORSBOOM, C.T. CHIN, N. DE JONG, "Nonlinear coded excitation
method for ultrasound contrast imaging", Ultrasound Med. Biol. 29(2),
277–284 (2003).

[7] K. CHETTY, J.V. HAJNAL, R.J. ECKERSLEY, "Investigating the nonlinear mi-
crobubble response to chirp encoded, multipulse sequences.", Ultrasound
Med. Biol. 32(12), 1887–1895 (2006).

[8] T.G. LEIGHTON, The Acoustic Bubble. London: Academic Press, (1994).
[9] S. HILGENFELDT, D. LOHSE, AND M. ZOMACK, "Response of bubbles to

diagnostic ultrasound: a unifying theoretical approach", Eur. Phys. J. B 4,
247–255 (1998).

[10] W. LAUTERBORN, "Nonlinear oscillations of gas bubbles", J. Acoust. Soc.
Am. 59(2), 283–293 (1976).

[11] M. MINNAERT, "On musical air-bubbles and the sounds of running water."
Phil. Mag. 16, 235–248 (1933).

[12] C. T. CHIN, C. LANCÉE, J. BORSBOOM, F. MASTIK, M. E. FRIJLINK, N. DE

JONG, M. VERSLUIS, D. LOHSE, "Brandaris 128: A digital 25 million frames
per second camera with 128 highly sensitive frames", Rev. Sci. Instrum.
74(12), 5026–5034 (2003).

[13] M. SONKA, V. HLAVAC, R. BOYLE, Image processing, analysis, and machine
vision, 2nd ed. Pacific Grove, CA: PWS Pub., (1999).

[14] M. SCHNEIDER, A. BROILLET, P. BUSSAT, N. GIESSINGER, J. PUGINIER,
R. VENTRONE, AND F. YAN, "Gray-scale liver enhancement in VX2 tumor-
bearing rabbits using BR14, a new ultrasonographic contrast agent",
Invest. Radiol. 32(7), 410–417 (1997).

[15] A. PROSPERETTI, "Nonlinear oscillations of gas bubbles in liquids: steady-
state solutions", J. Acoust. Soc. Am. 56(3), 878–885 (1974).

[16] A. PROSPERETTI, "Nonlinear oscillations of gas bubbles in liquids: transient
solutions and the connection between subharmonic signal and cavitation",
J. Acoust. Soc. Am. 57(4), 810–821 (1975).

[17] P. N. BURNS, S. R. WILSON, D. H. SIMPSON, "Pulse inversion imaging of
liver blood flow: Improved method for characterizing focal masses with
microbubble contrast", Invest Radiol. 35, 58–71 (2000).

[18] K. E. MORGAN, M. AVERKIOU, K. FERRARA, "The effect of the phase of
transmission on contrast agent echoes", IEEE Trans. Ultrason., Ferroelect.,
Freq. Contr. 45, 872–875, (1998).



134 6. BUBBLE RESONANCE USING CHIRPS

[19] F. FORSBERG, B. B. GOLDBERG, Y. Q. WU, J. B. LIU, D. A. MERTON,
N. M. RAWOOL, "Harmonic imaging with gas-filled microspheres: Initial
experiences", Int. J. Imaging Syst. Tech. 8, 69–81 (1997).

[20] N. DE JONG, A. BOUAKAZ, F. J. TEN CATE, "Contrast harmonic imaging",
Ultrasonics 40, 567–573 (2002).

[21] O. LOTSBERG, J. M. HOVEM, B. AKSUM, "Experimental observation of
subharmonic oscillations in Infoson bubbles", J. Acoust. Soc. Amer. 99,
1366–1369 (1996).

[22] W. T. SHI, F. FORSBERG, A. L. HALL, R. Y. CHIAO, J. B. LIU, S. MILLER,
K. E. THOMENIUS, M. A. WHEATLEY, B. B. GOLDBERG, "Subharmonic
imaging with microbubble contrast agents: Initial results", Ultrason. Imag.
21, 79–94 (1999).

[23] A. BOUAKAZ, "Chirp reversal ultrasound contrast imaging", Patent no.
WO2007015176, France, Inserm, (2005).

[24] Y. SUN, S. ZHAO, P. A. DAYTON, K. W. FERRARA, "Observation of contrast
agent response to chirp insonation with a simultaneous optical-acoustical
system", IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 53(6), 1130–1137
(2006).

[25] Y. SUN, D. E. KRUSE, K. W. FERRARA, "Contrast Imaging with Chirped
Excitation", IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(3), 520–529
(2007).

[26] R. Y. CHIAO, X. HAO, "Coded excitation for diagnostic ultrasound: a system
developer’s perspective", IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52(2), 160–170 (2005).

[27] T. MISARIDIS, J. A. JENSEN, "Use of modulated excitation signals in medical
ultrasound. Part I: Basic concepts and expected benefits", IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 52(2), 177–191 (2005).

[28] D.R. CHILDS, "Exact solution of the non-linear differential equation RR̈ +
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7
Conclusions

In January 2003 the Brandaris 128 high speed camera became operational,
opening up a whole new area of research in the diagnostic ultrasound
field. With the camera it was possible to study the effect of ultrasound
on single oscillating ultrasound contrast agent microbubbles.

So what have we learned from this? First of all, bubbles do not
always oscillate symmetrically. Time-resolved bubble dynamics recorded
with the camera revealed that nearly 40% of the coated bubbles show
’compression-only’ behavior, a highly nonlinear behavior [1]. We at-
tribute this phenomenon to the lipid coating of the bubble. Three
additional parameters were introduced to the Rayleigh–Plesset equation
to account for the physics of the lipid coating: a buckling surface radius,
a shell compressibility and a break-up shell tension. The model predicts
compression-only behavior, and the model can also account for aging of
the bubble and shell rupture.

Furthermore, we tested a number of methods to determine the eigen-
frequency and damping of an oscillating contrast microbubble. Probing
microbubbles with different bursts of a fixed frequency, we learned that
the shell elasticity increases the resonance frequency compared to the
uncoated bubble case and the shell viscosity proves to be a significant
source of damping. Moreover, we showed that the shell viscosity increases
with the bubble radius and suggested an explanation in terms of surface
rheology.

Probing the microbubbles with a chirp signal, we learned that we can
determine the eigenfrequency of a bubble or the peak frequency for very
large amplitudes and very nonlinear oscillations. This peak frequency was
seen to lower with increasing oscillation amplitude.

We learned that bubbles do no always oscillate spherically. Both free
floating micrometer sized gas bubbles as well as contrast microbubbles
have been seen to oscillate with different surface modes.

135
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In the free floating bubble case, the observed mode number n was
found to be linearly related to the resting radius of the bubble. Above
the critical threshold for shape oscillations, which is minimum at the
resonance of the volumetric radial mode, the mode number n is indepen-
dent of the forcing pressure amplitude. It was found that a parametric
instability is responsible for the shape oscillations.

In the contrast microbubble case, we have learned that they are
significantly present in medically relevant ranges of bubble radii and
applied acoustic pressures. Several features prove that nonspherical
deformations are a parametric instability driven by radial oscillations:
they oscillate subharmonically with respect to the applied frequency,
they require a finite time to grow, and they develop preferentially at the
resonance radius for the radial oscillations.

Finally, we learned that a microbubble responds differently to a chirp
signal depending whether the chirp contains up sweep or down sweep
frequencies. Here, again the resonance frequency of the microbubble
plays a major role: when the transmitted center frequency is higher than
the resonance frequency of the microbubble, up sweep chirp generates
a much shorter signal than the down sweep chirp. A chirp with a center
frequency lower than the resonance frequency causes the reversed effect.

In this context, continued effort is made to understand the bubble
dynamics. In all contrast agent microbubble experiments, the microbub-
bles are resting against the capillary fiber wall or a container wall. This
changes the bubble behavior, as we also comment on in Secs. 3.5.2 and
5.4.2. A more detailed discussion is given in [2]. Using an optical tweezer,
bubbles can now also be studied away from the wall. This tool allows
studies of bubble-wall interaction, and also bubble-bubble interaction.
In more detail, this is discussed in [3–5].

Contrast bubble specific behavior, such as a driving pressure ampli-
tude threshold was observed: a bubble does not start to oscillate until a
certain driving pressure amplitude is reached. This is discussed in more
detail in [6, 7].

How contrast bubble specific behavior, such as an amplitude thresh-
old, surface modes, and ’compression-only’ behavior translate into an
acoustic response is not known. Acoustic studies of individual microbub-
bles have until now always been hindered by the ability to isolate a
single contrast bubble and by the transducer calibration and its cor-
responding sensitivity. Performing simultaneous acoustic and optical
measurements [8] have revealed that depending on the initial bubble
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radius, driving pressure amplitude and frequency, either optical or acous-
tical methods have a better sensitivity to detect the response of a single
microbubble to ultrasound.
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Summary

The Brandaris 128 high speed camera was designed and built in order to
analyze the dynamics of single oscillating contrast agent microbubbles
under influence of ultrasound. In this thesis we report on our findings.

First, in Ch. 2, a new model was introduced which takes into account
the physical properties of a lipid monolayer coating on a gas microbubble.
Three parameters describe the properties of the shell: a buckling radius,
the compressibility of the shell, and a break-up shell tension. The model
presents an original non-linear behavior at large amplitude oscillations,
termed compression–only, induced by the buckling of the lipid mono-
layer. This prediction is validated by experimental recordings with the
Brandaris camera, operated at several million frames per second. The
effect of aging, or the resultant of repeated acoustic pressure pulses on
bubbles, is predicted by the model. Further, the model corrects a flaw
in the shell elasticity term previously used in the dynamical equation for
coated bubbles. The break-up is modeled by a critical shell tension above
which gas is directly exposed to water.

A new optical characterization of the behavior of single ultrasound
contrast bubbles is presented in Ch. 3. The method consists of insoni-
fying individual bubbles several times successively sweeping the applied
frequency, and to record movies of the bubble response up to 25 million
frames/s with the Brandaris camera operated in a segmented mode.
The method, termed microbubble spectroscopy, enables to reconstruct
a resonance curve in a single run. The data is analyzed through a
linearized model for coated bubbles. The results confirm the significant
influence of the shell on the bubble dynamics: shell elasticity increases
the resonance frequency by about 50%, and shell viscosity is responsible
for about 70% of the total damping. The obtained value for shell elasticity
is in quantitative agreement with previously reported values. The shell
viscosity increases significantly with the radius, revealing a new nonlinear
behavior of the phospholipid coating.

Bubbles ultrasonically driven near its resonance frequency can be-
come shape-unstable through a parametric instability. We report optical
observations with the Brandaris camera of shape oscillations (mode n
= 2 to 6) of single contrast agent microbubbles (in Ch. 5) and micron-
sized air bubbles (in Ch. 4) for a range of acoustic pressures. For the air
bubbles, the observed mode number n was found to be linearly related
to the resting radius of the bubble. Above the critical threshold for
shape oscillations, which is minimum at the resonance of the volumetric
radial mode, the mode number n is independent of the forcing pressure
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amplitude. The microbubble shape oscillations were also analyzed nu-
merically by introducing a small non-spherical linear perturbation into
a modified Rayleigh–Plesset model which includes a physical thermal
damping mechanism describing heat and mass transport in the thin
boundary layer at the bubble to water interface. It was found that a
parametric instability is indeed responsible for the shape oscillations
and that the new model captures the experimental observations in great
detail.

For the contrast agent microbubbles, we define a single, dimension-
less deformation parameter, and we quantify the amplitude of non-
spherical deformation as a function of bubble radius (between 1.5 and
5 µm) and of acoustic pressure (up to 400 kPa). We notably show that
surface modes preferentially develop for a bubble radius corresponding
to resonance of radial oscillations. Using optical tweezers designed to
fully trap and micromanipulate single bubbles in 3D, we compare the
magnitude of nonspherical deformation for bubbles in contact with a
wall and free-floating bubbles. We show that in the studied range of
acoustic pressures, the growth of surface modes saturates at a level far
below bubble breakage. We discuss the potential medical relevance of
these nonspherical oscillations, in relation with possible subharmonic
acoustic emission.

Another new optical characterization is discussed in Ch. 6. The
method consists of insonifying individual bubbles with a chirp of increas-
ing or decreasing frequency. The bubble response is analyzed in two ways:
one method consists of power spectrum analysis, and the other method
analyzes the phase difference between driving an response signals. The
new methods are compared with the microbubble spectroscopy method,
and give identical values for the eigenfrequency (or peak frequency for
high amplitude oscillations). With all three methods, a decrease in peak
frequency as function of increasing oscillation amplitude was reported,
which agrees with an analytical analysis.

Furthermore, in Sec. 6.5, the bubble response difference on a chirp
up sweep and a chirp down sweep was studied. It can be used as a
new contrast imaging approach based on chirps, and it was termed chirp
reversal contrast imaging. Simulations and optical observations with
the Brandaris camera were carried out to explore the potential of the
chirp reversal approach in detecting microbubbles. Simulations showed
that for larger bubbles (> 2.3 µm), significant differences occur between
upsweep chirp response and down sweep response around 1.7 MHz
transmit frequency. Optical observations confirmed these results. From
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the optical radius-time curves, the larger bubbles showed different dy-
namics when up sweep or down sweep frequencies were used in trans-
mission. Up sweep excitation chirps produce highly damped responses
with large amplitude excursions whereas the response to down sweep
chirps showed pronounced resonance behavior with smaller amplitudes.
Smaller bubbles (< 2.3 µm) appear to be less sensitive to frequency
sweep at 1.7 MHz transmit frequency. However, driven at a higher center
frequency, smaller bubbles tend to be more sensitive. Experimental and
theoretical data confirm that chirp reversal is feasible and can be used to
detect contrast microbubbles and to improve the contrast to tissue ratio
in imaging.





Samenvatting

De ‘Brandaris 128’ hogesnelheidscamera is ontworpen en gebouwd om
de dynamica van individuele oscillerende contrastvloeistof–microbellen
onder invloed van ultrageluid te bestuderen. In dit proefschrift rappor-
teren we onze bevindingen.

Allereerst wordt in hoofdstuk 2 een nieuw model geïntroduceerd dat
rekening houdt met de fysische eigenschappen van een lipide coating
van een contrastbel. Er zijn drie parameters die de eigenschappen van
de schil beschrijven: een knik–straal, de compressibiliteit van de schil
en een kritieke oppervlaktespanning van de schil. Het model laat niet–
lineair gedrag zien bij oscillaties met grote amplitude, ‘compression–
only’ genoemd, dat wordt veroorzaakt door het knikken van de lipide
monolaag. Deze voorspelling wordt bevestigd door experimentele
opnames met de Brandaris camera van veel miljoenen beeldjes per
seconde. Het effect van veroudering, of het resultaat van herhaalde
akoestische drukpulsen op bellen, wordt ook voorspeld door het model.
Verder corrigeert het model een fout in de elasticiteitsterm van de
schil die voorheen gebruikt werd in de dynamische vergelijking voor
gecoate bellen. Het breken van de bel is gemodelleerd door een kritieke
oppervlaktespanning van de schil, waarboven gas direct in contact komt
met water.

Een nieuwe optische karakterisatie van het gedrag van individuele
ultrageluid contrastbellen wordt gepresenteerd in hoofdstuk 3. De
methode bestaat uit het opeenvolgend aanstralen van individuele bellen
met verschillende frequenties en het opnemen van de reactie van de bel
in filmpjes met opnamesnelheden tot 25 miljoen beeldjes per seconde
met de Brandaris hogesnelheidscamera. De camera wordt gebruikt in een
gesegmenteerde modus. De methode, die ‘microbubble spectroscopy’
genoemd is, maakt het mogelijk een resonantiecurve te maken in een
enkele opname. De data worden geanalyseerd met een gelineariseerd
model voor gecoate bellen. De resultaten bevestigen de significante
invloed van de schil op de beldynamica: de elasticiteit van de schil
verhoogt de resonantiefrequentie met ongeveer 50% en de viscositeit van
de schil is verantwoordelijk voor ongeveer 70% van de totale demping.
De verkregen waarde voor de elasticiteit van de schil komt kwantitatief
overeen met eerder gerapporteerde waarden. De viscositeit van de schil
neemt significant toe met de straal, wat een nieuw niet–lineair gedrag van
de fosfolipide schil onthult.

Bellen die ultrasoon aangedreven worden in de buurt van hun
resonantiefrequentie kunnen vorm–instabiel worden door een para-
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metrische instabiliteit. We rapporteren optische opnames met de
Brandaris camera van vormoscillaties (mode n = 2 tot en met 6) van
individuele contrastbellen (in hoofdstuk 5) en van micrometerformaat
luchtbellen (in hoofdstuk 4) voor een bereik van akoestische drukken.
Voor de luchtbellen is gevonden dat het geobserveerde mode nummer
n lineair gerelateerd is aan de ruststraal van de bel. Boven een kritieke
drukamplitude, welke minimaal is op de volumetrische resonantie
van de bel, is het mode nummer n onafhankelijk van de akoestische
drukamplitude. De vormoscillaties van de microbellen zijn ook numeriek
geanalyseerd door een kleine niet–sferische lineaire verstoring te intro-
duceren in een aangepaste Rayleigh–Plesset vergelijking. Het model bevat
een thermisch dempingsmechanisme, dat warmte– en massatransport in
de dunne grenslaag tussen bel en water beschrijft. Een parametrische
instabiliteit is inderdaad verantwoordelijk voor de vormoscillaties en het
nieuwe model beschrijft de experimentele observaties zeer gedetailleerd.

Voor de contrastbellen definiëren we een enkele dimensieloze
deformatieparameter en kwantificeren we de amplitude van de niet–
sferische deformatie als een functie van de belstraal (tussen 1.5 en
5 µm) en van akoestische druk (tot en met 400 kPa). We laten
zien dat de oppervlaktemodes zich bij voorkeur ontwikkelen bij een
belstraal die correspondeert met de volumetrische resonantiestraal. Met
behulp van een optisch pincet, ontworpen om individuele bellen in
3D te vangen en te manipuleren, vergelijken we de grootte van de
niet–sferische deformatie voor bellen in contact met de wand en voor
vrij zwevende bellen. We laten zien dat in het bestudeerde bereik
van akoestische drukken de groei van oppervlaktemodes verzadigt op
een niveau ver onder beldestructie. We bediscussiëren de potentiële
medische relevantie van de niet–sferische oscillaties in relatie met de
mogelijke subharmonische akoestische emissie.

Een andere optische karakterisatie wordt bediscussieerd in hoofd-
stuk 6. De methode bestaat uit het aanstralen van individuele
bellen met een ‘chirp’ van oplopende of aflopende frequenties. De
reactie van de bel wordt geanalyseerd op twee manieren: de ene
methode bestaat uit de analyse van het vermogensspectrum en de
andere manier analyseert het faseverschil tussen de aandrijvende en de
resulterende signalen. De nieuwe methodes worden vergeleken met
de ‘microbubble spectroscopy’–methode en geven identieke waardes
voor de eigenfrequentie (of piekfrequentie voor oscillaties met grote
amplitude). Met alle drie methodes is een afname in piekfrequentie als
functie van oscillatieamplitude gerapporteerd, die overeenkomt met een
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analytische afleiding.
Verder wordt in sectie 6.5 het verschil in belreactie op een

oplopende en een aflopende ‘chirp’ bestudeerd. Deze ‘chirps’ kunnen
gebruikt worden bij een nieuwe beeldvormingsmethode met behulp van
contrastvloeistoffen en de methode is ‘chirp reversal contrast imaging’
genoemd. Simulaties en optische observaties met de Brandaris camera
zijn uitgevoerd om het potentieel van de ‘chirp reversal’–methode te
onderzoeken. Simulaties laten zien dat voor grotere bellen (> 2.3 µm)
significante verschillen ontstaan tussen belreacties op oplopende en
aflopende ‘chirps’ bij ultrageluid van 1.7 MHz. Optische observaties
bevestigen deze resultaten. In de optische straal–tijd curves laten de
grote bellen een andere reactie zien wanneer akoestisch oplopende of
aflopende frequenties gebruikt worden. Oplopende akoestische ‘chirps’
produceren zeer gedempte belreacties met grote amplitude, terwijl de
reactie op aflopende akoestische ‘chirps’ juist resonantiegedrag met
kleine amplitudes laat zien. Kleinere bellen (< 2.3 µm) lijken minder
gevoelig te zijn bij een akoestische ‘chirp’. Echter, bij een hogere
centrumfrequentie zijn kleinere bellen gevoeliger. Experimentele en
theoretische data bevestigen dat ‘chirp reversal’ uitvoerbaar is en gebruikt
kan worden om contrastbellen te detecteren en om de verhouding van
contrast tot weefsel in beeldvorming te vergroten.
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